Некоторые бактерии способны фиксировать атмосферный (молекулярный) азот, т. е. переводить его в связанное состояние. Они восстанавливают азот до аммиака; часть его используется самими микроорганизмами, а часть выделяется в окружающую среду.
Одни азотфиксирующие (азотусваивающие) бактерии живут свободно в почве и воде; другие – в симбиотическом сожительстве с растениями, преимущественно бобовыми. Бактерии поселяются в бородавчатых вздутиях – клубеньках корней этих растений. Отсюда произошло и название этих бактерий – клубеньковые. Энергию, необходимую для фиксации бактерии получают в процессе окисления безазотистых органических соединений, которые они берут из клеток корней растений.
Величина и форма клубеньковых бактерий значительно изменяются в зависимости от их возраста и условий жизни. Молодые клетки – мелкие подвижные палочки – не образуют спор. По мере развития клетки теряют жгутики, становятся искривленными, утолщенными или ветвистыми; эти формы клубеньковых бактерий называются бактероидами.
Среди свободно живущих азотфиксирующих бактерий наибольшее значение имеет аэробная бактерия Azotobacter chroocaccum, имеющая форму слегка приплюснутых кокков, часто объединенных попарно; клетки имеют слизистую капсулу.
Из анаэробных свободно живущих азотусваивающих бактерии следует отметить бактерию, открытую С. Н. Виноградским (1893 г.), – Clostndium pasteurianum. Это подвижные спорообразующие палочки, способные сбраживать углеводы по типу маслянокислого брожения, которое и служит бактериям источником энергии для связывания молекулярного азота.
Азотфиксирующие бактерии имеют важное значение для сельского хозяйства. За счет их деятельности постоянно пополняются азотистые запасы почвы, что способствует ее плодородию.
В практике сельского хозяйства препараты из азотфиксирующих бактерий используются в качестве бактериального удобрения: азотобактерин – из культур азотобактера, нитрагин – из культур клубеньковых бактерий.
Свободноживущие азотфиксирующие микроорганизмы:
Азотобактер (Azotobacter). В 1901 году Бейеринк выделил из почвы аэробную неспорообразующую грамотрицательную бактерию, фиксирующую молекулярный азот, и назвал ее Azotobacter chroococcum (в родовом названии отражена способность бактерии фиксировать азот, в видовом – способность синтезировать коричневый пигмент – chroo и образовывать кокковидные клетки – coccum). Азотобактер – типичный представитель свободноживущих микроорганизмов. Свободноживущие – это все те микроорганизмы, которые живут в почве независимо от того, развивается вблизи растение или нет.
Бейеринкия (Beijerinckia) Впервые аэробные бактерии рода Beijerinckia были выделены из кислых почв рисовых полей в Индии (в 1939 г.). Г. Деркс (1950), обнаружив эту бактерию в почве Ботанического сада в Богоре (Ява), предложил назвать ее именем М. Бейеринка – одного из первых исследователей фиксаторов азота.
Клостридиум (Clostridium) Первый анаэробный микроорганизм, усваивающий молекулярный азот, был выделен и описан С. Н. Виноградским в 1893 г. Он оказался спорообразующей бактерией, которой было дано наименование Clostridium pasteurianum (родовое название происходит от латинского слова clostrum – веретено; видовое – pasteurianum – дано в честь Луи Пастера).
Сейчас известно свыше 80 видов и разновидностей бактерий, несколько видов актиномицетов, дрожжей, дрожжеподобных организмов и плесневых грибов, способных фиксировать азот. Они населяют почву, дно морей и пресных водоемов.
Остановимся на характеристике лишь основных представителей бактерий.
Способность фиксировать азот присуща ряду представителей семейства Pseudomonadaceae. Они довольно широко распространены в природе. К наиболее интересным представителям этого семейства относится несколько видов: Azotomonas insolita, фиксирующий до 12 мг азота на 1 г использованного сахара и встречающийся нередко не только в почве, но и как эпифит на растениях; Azotomonas fluorescens, выделенный впервые из компостов Н. А. Красильниковым (1945), продуктивность азотфиксации которого не меньше, чем у первого вида; Pseudomonas azotocolligans, населяющий кислые и щелочные почвы Америки; Pseudomonas azotogensis, широко распространенный в почвах Канады и легко выделяющийся из парниковых почв, и, наконец, Pseudomonas methanitrificens, который встречается в почвах, имеющих выход источников природных газов. Последняя бактерия особенно интересна тем, что она использует метан и другие газообразные углеводороды в качестве единственного источника углерода, за счет энергии разложения которых она усваивает азот атмосферы.
Представители семейства Spirillaceae, фиксирующие молекулярный азот, распространены преимущественно в рыбоводных прудах, озерах, морской воде, морских отложениях. Возможно, они играют немаловажную роль в фиксации азота в водоемах.
Не только азотобактеру, как члену семейства Azotobacteriaceae, свойственна азотфиксирующая функция. В почвах Индии встречаются еще два представителя этого семейства — Derxia gummosa и Derxia indica — активные, хотя и медленнодействующие, азотфиксаторы. В азотном балансе почв они, как и бактерии Agrobacterium radiobacter из семейства Rhizobiaceae, по-видимому, не играют сколько-нибудь значительной роли. Молекулярному азоту они предпочитают связанные источники азота, такие, как мочевина, пептон, аминокислоты и минеральные соединения.
Среди спорообразующих грамположительных бактерий семейства Bacillaceae азотфиксирующая способность выявлена у факультативных анаэробов Bacillus polymyxa, аэробов Bacillus megaterium и Thermobacillus azotofigens. Последняя бактерия, выделенная из удобренной навозом дерново-карбонатной почвы Эстонской ССР, оказалась термофильной с оптимумом роста 45-50°С и максимумом 60-65°С. При температурах ниже 20°С она не развивается.
Распространение функции азотфиксации в ряде семейств фотосинтезирующих бактерий (семейства Thiorhodaceae, Athiorhodaceae, Chlorobacteriaceae, Hyphomicrobiaceae) не случайно, так как, по-видимому, они являются представителями одной из древнейших групп азотфиксаторов на Земле.
Небольшие количества молекулярного азота способны усваивать почвенные микобактерии. Усвоенный микобактериями азот в сочетании с азотом, ассимилированным другими олигонитрофильными микроорганизмами, сине-зелеными водорослями, лишайниками и мхами, настолько обогащает примитивную почву азотом, что ее могут заселять высшие растения.
Биологическая фиксация азота атмосферы имеет важное значение. Об этом свидетельствуют масштабы процесса — до 200 млн т N/год. Благодаря биологической фиксации азот переходит в формы, которые могут использовать все растительные, а через них и животные организмы.
Характеристика азотфиксаторов.
Организмы, способные к усвоению азота воздуха, можно разделить на группы:
1) симбиотические азотфиксаторы — микроорганизмы, которые усваивают азот атмосферы, только находясь в симбиозе с высшим растением;
2) не симбиотические азотфиксаторы — микроорганизмы, свободно живущие в почве и усваивающие азот воздуха;
3) ассоциативные азотфиксаторы — микроорганизмы, обитающие на поверхности корневой системы злаков, т. е. живущие в ассоциации с высшими растениями.
Важное значение имеют симбиотические азотфиксаторы, живущие в клубеньках корней бобовых растений (клубеньковые бактерии), относящиеся к роду Rhizobium. Связывание азота атмосферы возможно только при симбиотической ассоциации микроорганизмов этого вида и высшего растения в основном из семейства Бобовые. Существует большое количество разновидностей (штаммов) клубеньковых бактерий, каждая из которых приспособлена к заражению одного или нескольких видов бобовых растений. Это отражается в их названиях: Rhizobium lupini — клубеньковые бактерии люпина и Rhizobium trifolii— клубеньковые бактерии клевера и т. д..
Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Такая способность организмов передвигаться в ответ на узнавание химических продуктов, называется хемотаксисом. В осуществлении контактного взаимодействия микроорганизмов С растением важное значение имеет так называемое лектину-глеводное узнавание растения микроорганизмом. Суть этого в том, что лектин корневых волосков растений прочно связывается с углеводом поверхности бактерий. Бактерии, внедрившиеся в корневой волосок, в виде сплошного тяжа (т. н. инфекционные нити), состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться. Возможно, бактерии выделяют гормональные вещества типа ауксина и именно это является причиной разрастания тканей, образуются вздутия — клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Бактерии при этом трансформируются сами, увеличиваются в размерах, поэтому их называют бактероиды.Клубеньковые бактерии заражают только полиплоидные клетки корня. Ткань к пубеньков, заполненная бактериями, приобретает розовую окраску, так как поте заражения в клетках бактерий образуется пигмент, сходный с гемоглобином, — леггемоглобин. Этот пигмент связывает кислород воздуха и тем самым предохраняет фермент нитрогеназу от воздействия кислорода. Исследования показали прямую зависимость между содержанием леггемоглобина и скоростью фиксации азота. При отсутствии леггемоглобина азот не усваивается. Информация об образовании леггемоглобина содержится в ДНК ядра клетки высшего растения. Синтезируется клетками растения-хозяина. Однако он образуется после их заражения. Гены растений, кодирующие образование клубеньков, носят название nod-GENE (нодулин-гены). Показано, что скопление бактерий вокруг корня вызывает выделение веществ (возможно олигосахаров), которые активируют т. н. нодулин-белок, индуцирующий транскрипцию нодулин-генов. Взаимоотношения между высшими растениями и клубеньковыми бактериями обычно характеризуют как симбиоз. Однако на первых этапах заражения бактерии питаются целиком за счет высшего растения, т. е. практически паразитируют на нем. В этот период рост зараженных растений даже несколько тормозится.
В дальнейшем азотфиксирующая способность бактерий увеличивается, и они начинают снабжать азотистыми веществами растение-хозяина, вместе с тем бактерии получают от высшего растения углеводы (симбиоз). По мере дальнейшего развития наступает этап, когда высшее растение паразитирует на клетках бактерий, потребляя все образующиеся там азотистые соединения. В этот период часто наблюдается растворение (лизис) бактериальных клеток.
Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом. Посев бобовых растений ведет к повышению почвенного плодородия. Гектар бобовых растений в симбиозе с бактериями может перевести в связанное состояние от 100 до 400 кг азота за год. Значение этого трудно переоценить, если учесть, что азотные удобрения наиболее дорогостоящи, а в почве соединения азота содержатся в небольших количествах. Существуют и другие виды высших растений, у которых наблюдается симбиоз с микроорганизмами. Так, маленький водный папоротник азолла (Azolla) находится в симбиотических отношениях с азотфиксирующими цианобактериями. Азолла способна фиксировать до 0,5 кг азота на га в сутки. Некоторые деревья и кустарники (например, ольха, облепиха, лох) имеют в качестве симбионтов бактерии из рода актиномицеты. Большое значение имеют свободноживущие бактерии — азотфиксаторы. В 1893 г. русским микробиологом С.Н. Виноградским была выделена анаэробная азотфиксирующая бактерия Clostridium pasteurianum. В 1901 г. голландский ученый М. Бейеринк выделил две аэробные азотфиксирующие бактерии — Azotobacter chroococum, Azotobacter agile. Сейчас известен ряд видов Azotobacter. Свободноживущие азотфиксаторы могут быть факультативными аэробными или факультативными анаэробными. Для того чтобы эти микроорганизмы осуществляли процесс фиксации азота, необходимо присутствие молибдена, железа и кальция. Особенно важно присутствие молибдена. Свободно живущие азотфиксаторы {Azotobacter) усваивают в среднем около 1 г азота на 1 м2 в год. Усваивать атмосферный азот способны и многие другие бактерии: клебсиеллы, бациллы и т. д. Особый интерес представляют цианобактерии, вызывающие цветение пресных и океанических водоемов. В ряде стран их разведение практикуется на рисовых полях.
Ассоциативные азотфиксаторы были обнаружены в 70—80-х годах XX в. в лаборатории Д. Доберейнер в Бразилии (1976). Число их видов велико, как велико разнообразие ассоциативных взаимоотношений растений с микроорганизмами. Такие отношения характерны для ризосферных микроорганизмов, т. е. живущих на поверхности корневой системы растений. Часто микробиологи не делают различия между ассоциативными и свободноживущими азотфиксаторами. Последовательность взаимоотношений с растением-хозяином ассоциативных азотфиксаторов имеет определенное сходство с симбиотическими организмами: хемотаксическое узнавание, лектин-углеводное узнавание и этап установления прочных связей. Отсутствует только этап образования клубеньков. Эффективность азотфиксации ассоциативной микрофлорой меньше по сравнению с симбиотической, но ассоциативные азотфиксаторы продуцируют гормоны роста растений и обладают другими свойствами, положительно влияющими на рост и развитие растений (защита от фитопатогенов, разрушение токсических веществ). Наиболее изучены из этой группы микроорганизмы из рода азоспирилл (Azospirillum). Они колонизируют корни злаков и в связи с этим представляет интерес технология их выращивания. Азоспириллы легко инфицируют корневую систему злаков и других растений.
Поможем написать любую работу на аналогичную тему
Реферат
Фиксация молекулярного азота. Свободноживущие и симбиотические азотофиксирующие микроорганизмы.
От 250 руб
Контрольная работа
Фиксация молекулярного азота. Свободноживущие и симбиотические азотофиксирующие микроорганизмы.
От 250 руб
Курсовая работа
Фиксация молекулярного азота. Свободноживущие и симбиотические азотофиксирующие микроорганизмы.
От 700 руб