Нужна помощь в написании работы?

Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.

История КХД

С изобретением пузырьковой камеры и искровой камеры в 1950-х гг., экспериментальная физика элементарных частиц обнаружила большое и постоянно растущее число частиц, названных адронами. Стало ясно, что все они не могут быть элементарными. Частицы были классифицированы по электрическому заряду и изоспину; затем (в 1953 г.) Мюрреем Гелл-Манном и Казухико Нисидзимой — по странности. Для лучшего понимания общих закономерностей адроны были объединены в группы и по другим сходным свойствам: массам, времени жизни и пр. В 1963 г. Гелл-Манн и, независимо от него, Джордж Цвейг, высказали предположение, что структура этих групп (фактически, SU(3)-мультиплетов) может быть объяснена существованием более элементарных структурных элементов внутри адронов. Эти частицы были названы кварками. Все многообразие известных на тот момент адронов могло быть построено всего из трех кварков: u d и s. Впоследствии было открыто еще три более массивных кварка. Каждый из этих кварков является носителем определенного квантового числа, названного его ароматом.

Однако, в подобном описании одна частица, Δ++(1232), оказалась наделена необъяснимыми свойствами; в кварковой модели, она составлена из трех u-кварков со спинами, ориентированными в одном направлении, причем орбитальный момент их относительного движения равен нулю. Все три кварка в таком случае должны находиться в одном и том же квантовом состоянии, а так как кварк является фермионом, подобная комбинация запрещается принципом исключения Паули. В 1965 г. Моо-Юнг Хан совместно с Йохиро Намбу и Оскар В. Гринберг независимо друг от друга решили эту проблему, предположив, что кварк обладает дополнительными степенями свободы калибровочной группы SU(3), позже названными «цветовыми зарядами». Хан и Намбу отметили, что кварк взаимодействует через октет векторных калибровочных бозонов, названных глюонами (англ. «glue» — «клей»).

Поскольку свободных кварков не было обнаружено, считалось, что кварки были просто удобными математическими конструкциями, а не реальными частицами. Эксперименты по глубоконеупругому рассеянию электронов на протонах и связанных нейтронах показали, что в области больших энергий рассеяние происходит на каких-то элементах внутренней структуры, имеющих значительно меньшие размеры, чем размер нуклона: Ричард Фейнман назвал эти элементы «партонами» (так как они являются частями адронов). Результаты были окончательно проверены в экспериментах в SLAC в 1969 г. Дальнейшие исследования показали, что партоны следует отождествить с кварками, а также с глюонами.

Хотя результаты изучения сильного взаимодействия остаются немногочисленными, открытие асимптотической свободы Дэвидом Гроссом, Дэвидом Полицером и Франком Вилчеком позволило сделать множество точных предсказаний в физике высоких энергий, используя методы теории возмущений. Свидетельство существования глюонов было обнаружено в трехструйных событиях в PETRA в 1979 г. Эти эксперименты становились все более точными, достигая высшей точки в проверке пертурбативной КХД на уровне нескольких процентов в LEP в CERN.

Другая сторона асимптотической свободы — конфайнмент. Так как сила взаимодействия между цветовыми зарядами не уменьшается с расстоянием, предполагается, что кварки и глюоны никогда не могут быть освобождены из адрона. Этот аспект теории подтвержден расчетами решёточной КХД, но математически не доказан. Поиск этого доказательства — одна из семи «задач тысячелетия», объявленных Математическим институтом Клэя. Другие перспективы непертурбативной КХД — исследование фаз кварковой материи, включая кварк-глюнную плазму.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями