Нужна помощь в написании работы?

Квантовая хромодинамика начинается с того, что мы постулируем, что каждый кварк обладает новым внутренним квантовым числом, условно называемым цветовым зарядом, или просто цветом. Термин «цвет», конечно же, не имеет никакого отношения к оптическим цветам и введён исключительно для целей популяризации. Дело в том, что инвариантная в цветовом пространстве комбинация есть сумма трёх различных цветов. Это сильно напоминает то, что сумма трёх основных оптических цветов — красного, зелёного и синего — дает белый цвет, т.  е. бесцветное состояние. Именно в этом смысле базисные вектора в цветовом пространстве часто называют не первый, второй, третий, а «красный» (к), «зелёный» (з) и «синий» (с). Антикваркам соответствуют анти-цвета (ак, аз, ас), причём комбинация «цвет + антицвет» тоже бесцветна. Глюоны же в цветовом пространстве есть комбинации «цвет-антицвет», причём такие комбинации, которые не являются инвариантными относительно вращений в цветовом пространстве. Таких независимых комбинаций оказывается восемь, и выглядят они следующим образом:

к-аз, к-ас, з-ак, з-ас, с-ак, с-аз, (к-ак − з-аз)/\sqrt{2}, (к-ак + з-аз − 2с-ас)/\sqrt{6}

Например, «синий» кварк может испустить «синий-антизелёный» глюон и превратиться при этом в «зелёный» кварк.

Лагранжиан КХД

Новая внутренняя степень свободы, цвет, означает, что кварковому полю приписывается определённый вектор состояния qi единичной длины в комплексном трёхмерном цветовом пространстве C(3). Вращения в цветовом пространстве C(3), т.  е. линейные преобразования, сохраняющие длину, образуют группу SU(3), размерность которой равна 32-1=8.

Поскольку группа SU(3) связна, все её элементы можно получить экспоненциированием алгебры ASU(3). Следовательно, любое вращение в C(3)

q^i = U^i_j q^j

можно представить в виде U = exp(icata), где 3×3 матрицы ta (a = 1 … 8) называются матрицами Гелл-Манна и образуют алгебру ASU(3). Поскольку матрицы Гелл-Манна не коммутируют друг с другом,  = i\,f^{ab}_c t^c, калибровочная теория, построенная на группе SU(3), является неабелевой (то есть является теорией Янга — Миллса).

Далее используется стандартный принцип калибровочной инвариантности. Рассмотрим лагранжиан свободного кваркового поля

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

L = \bar{q} (i \partial_\mu \gamma^\mu - m) q\,

Этот лагранжиан инвариантен относительно глобальных калибровочных преобразований кварковых и антикварковых полей: q \to \exp(i c_a t^a) q,\ \bar q \to \exp(-i c_a t^a)\bar q, где ca не зависят от координат в обычном пространстве.

Если же потребовать инвариантность относительно локальных калибровочных преобразований (то есть при ca(xμ)), то приходится вводить вспомогательное поле A_\mu^a. В результате, лагранжиан КХД, инвариантный относительно локальных калибровочных преобразований, имеет вид (суммирование по ароматам кварков также предполагается)

L = \bar{q} (i \partial_\mu \gamma^\mu + g A^\mu - m)q - {1\over 2} \mathrm{Tr\,} G^{\mu\nu} G_{\mu\nu}

где G_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i gтензор напряжённостей глюонного поля, а A_\mu \equiv \sum_{a=1}^{8} A^a_\mu t^aесть само глюонное поле.

Видно, что этот лагранжиан порождает наряду с вершиной взаимодействия кварк-антикварк-глюон и трёхглюонные и четырёхглюонные вершины. Иными словами, неабелевость теории привела к взаимодействию глюонов и к нелинейным уравнениям Янга-Миллса.

Поделись с друзьями