Нужна помощь в написании работы?

Закон электромагнитнойиндукции лежит в основе современной электротехники, которая, в свою очередь, составляет ядро современной индустрии, полностью преобразившей всю нашу цивилизацию. Практическое применение электромагнитной индукции началось только спустя полвека после ее открытия. В то время технический прогресс шел еще сравнительно медленно. Причина, по которой электротехника играет столь важную роль во всей нашей современной жизни, состоит в том, что электричество является наиболее удобной формой энергии и именно благодаря закону электромагнитной индукции. Последний позволяет легко получать электроэнергию из механической (генераторы), гибко распределять и транспортировать энергию (трансформаторы) и преобразовывать ее обратно в механическую (электромотор) и другие виды энергии, причем все это происходит с очень высоким КПД. Еще каких-нибудь 50 лет назад распределение энергии между станками на заводах осуществлялось через сложную систему валов и ременных передач — лес трансмиссий составлял характерную деталь индустриального «интерьера» того времени. Современные станки оборудованы компактными электродвигателями, питаемыми по системе скрытой электропроводки.

Современная индустрия использует единую систему электроснабжения, охватывающую всю страну, а иногда и несколько соседних стран.

Система электроснабжения начинается с генератора электроэнергии. Работа генератора основана на непосредственном использовании закона электромагнитной индукции. Схематически простейший генератор представляет собой неподвижный электромагнит (статор), в поле которого вращается катушка (ротор). Возбуждаемый в обмотке ротора переменный ток снимается с помощью специальных подвижных контактов — щеток. Так как через подвижные контакты трудно пропустить большую мощность, часто применяется обращенная схема генератора: вращающийся электромагнит возбуждает ток в неподвижных обмотках статора. Таким образом, генератор преобразует в электричество механическую энергию вращения ротора. Последний приводится в движение с помощью либо тепловой энергии (паровая или газовая турбина), либо механической (гидротурбина).

На другом конце системы энергоснабжения стоят различные исполнительные механизмы, использующие электроэнергию, важнейшим из которых является электродвигатель (электромотор). Наиболее распространен, благодаря своей простоте, так называемый асинхронный двигатель, изобретенный независимо в 1885-1887 гг. итальянским физиком Феррарисом и знаменитым хорватским инженером Тесла (США). Статор такого двигателя представляет собой сложный электромагнит, создающий вращающееся поле. Вращение поля достигается с помощью системы обмоток, токи в которых сдвинуты по фазе.

В технике обычно используется схема вращения поля с помощью, так называемого трехфазного тока, т. е. трех токов, фазы которых сдвинуты на 120° друг в Германии на этой основе первую в мире техническую линию электропередачи.

Рис.4.1. Схема получения вращающегося магнитного поля.

Обмотка ротора асинхронного двигателя состоит в простейшем случае из короткозамкнутых витков. (рис.4.2) Переменное магнитное поле наводит в витках такой ток, который приводит к вращению ротора в том же направлении, что и магнитное поле. В соответствии с правилом Ленца ротор стремится «догнать» вращающееся магнитное поле. Для нагруженного двигателя скорость вращения ротора всегда меньше, чем поля, так как в противном случае ЭДС индукции и ток в роторе обратились бы в нуль. Отсюда название — асинхронный двигатель.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Рис. 4.2 Схематическое изображение асинхронного двигателя

Основной элемент систем преобразования и транспортировки электроэнергии — трансформатор, изменяющий напряжение переменного тока. Для дальней передачи электроэнергии выгодно использовать максимально возможное напряжение, ограничиваемое только пробоем изоляции. При заданной передаваемой мощности ток в линии обратно пропорционален напряжению, а потери в линии падают как квадрат напряжения. С другой стороны, для питания потребителей электроэнергии необходимы значительно меньшие напряжения, главным образом по соображениям простоты конструкции (изоляции), а также техники безопасности. Отсюда необходимость трансформации напряжения.

Рис. 4.3. Схема трансформатора переменного тока.

Обычно трансформатор состоит из двух обмоток на общем железном сердечнике (рис. 4.3). Железный сердечник необходим в трансформаторе для уменьшения потока рассеяния и, следовательно, лучшего потокосцепления между обмотками. Так как железо является одновременно и проводником, оно пропускает переменное магнитное поле лишь на небольшую глубину. Поэтому сердечники трансформаторов приходится делать шихтованными, т. е. в виде набора тонких пластин, электрически изолированных одна от другой. Для промышленной частоты 50 Гц обычная толщина пластины составляет 0,5 мм.

 Простое преобразование электрического напряжения возможно только для переменного тока. Этим определяется его решающая роль в современной индустрии. В тех случаях, когда требуется постоянный ток, возникают существенные трудности. Например, в сверхдальних линиях передачи электроэнергии применение постоянного тока дает значительные преимущества: уменьшаются тепловые потери, так как нет скин-эффекта и отсутствуют резонансные (волновые) переходные процессы при включении — выключении линии передачи, длина которой порядка длины волны переменного тока (6000 км для промышленной частоты 50 Гц). Трудность же состоит в выпрямлении переменного тока высокого напряжения на одном конце линии передачи и обратного преобразования — на другом.

Закон электромагнитной индукции успешно используется в индукционных печах. Индукционные печи широко применяются в промышленном производстве для создания высоких температур. В таких печах и устройствах тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой нагрев.

Индукционный нагрев металлов основан на двух физических законах: законе электромагнитной индукции Фарадея-Максвелла и законе Джоуля-Ленца. Металлические тела (заготовки, детали и др.) помещают в переменное магнитное поле, которое возбуждает в них вихревое электрическое поле. ЭДС индукции определяется скоростью изменения магнитного потока. Под действием ЭДС индукции в телах протекают вихревые (замкнутые внутри тел) токи, выделяющие теплоту по закону Джоуля-Ленца. Эта ЭДС создает в металле переменный ток, тепловая энергия, выделяемая данными токами, является причиной нагрева металла. Индукционный нагрев является прямым и бесконтактным. Он позволяет достигать температуры, достаточной для плавления самых тугоплавких металлов и сплавов.

Интенсивный индукционный нагрев возможен лишь в электромагнитных полях высокой напряженности и частоты, которые создают специальными устройствами - индукторами. Индукторы питают от сети 50 Гц (установки промышленной частоты) или от индивидуальных источников питания - генераторов и преобразователей средней и высокой частоты.

Простейший индуктор устройств косвенного индукционного нагрева низкой частоты - изолированный проводник (вытянутый или свернутый в спираль), помещенный внутрь металлической трубы или наложенный на ее поверхность. При протекании по проводнику-индуктору тока в трубе наводятся греющие ее вихревые токи. Теплота от трубы (это может быть также тигель, емкость) передается нагреваемой среде (воде, протекающей по трубе, воздуху и т. д.).

Индукционный нагрев применяют для поверхностной закалки стальных изделий, сквозного нагрева под пластическую деформацию (ковку, штамповку, прессование и т. д.), плавления металлов, термической обработки (отжиг, отпуск, нормализация, закалка), сварки, наплавки, пайки металлов.

Поделись с друзьями