Рассмотрим действие закона Харди-Вайнберга при неполном доминировании на примере наследования окраски шерсти у лис. Известно, что основное влияние на окраску шерсти у лисиц оказывает ген А, который существует в виде двух основных аллелей: А и а. Каждому возможному генотипу соответствует определенный фенотип:
АА – рыжие, Аа – сиводушки, аа – черно-бурые (или серебристые)
На заготовительных пунктах пушнины в течение многих лет (в России с XVIII века) ведется учет сданных шкурок. Откроем книгу учета сданных шкурок лис на одном из заготовительных пунктов Северо-Востока России и выберем произвольно 100 идущих подряд записей. Подсчитаем число шкурок с различной окраской. Предположим, что получены следующие результаты: рыжие (АА) – 81 шкурка, сиводушки (Аа) – 18 шкурок, черно-бурые (аа) – 1 шкурка.
Подсчитаем число (абсолютную частоту) доминантных аллелей А, учитывая, что каждая лиса – диплоидный организм. Рыжие лисы несут по 2 аллеля А, их 81 особь, всего 2А×81=162А. Сиводушки несут по 1 аллелю А, их 18 особей, всего 1А×18=18А. Общая сумма доминантных аллелей NА = 162 + 18 = 180. Аналогичным образом подсчитаем число рецессивных аллелей а: у черно-бурых лис 2а×1=2а, у сиводушек 1а×18=18а, общая сумма рецессивных аллелей Nа = 2 + 18 = 20.
Общее число всех аллелей гена А = NA + Na =180 + 20 = 200. Мы проанализировали 100 особей, у каждой по 2 аллеля, общая сумма аллелей равна 2 × 100 = 200. Число аллелей, подсчитанных по каждому гено/фенотипу, и число аллелей, подсчитанных по общему количеству особей, в любом случае равно 200, значит, расчеты проведены правильно.
Найдем относительную частоту (или долю) аллеля А по отношению к общему количеству аллелей:
рА = NA : ( NA + Na ) = 180 : 200 = 0,9
Аналогично найдем относительную частоту (или долю) аллеля а:
qa = Na : (NA + Na ) = 20 : 200 = 0,1
Сумма относительных частот аллелей в популяции описывается соотношением:
рА + qa = 0,9 + 0,1 = 1
Приведенное уравнение является количественным описанием аллелофонда данной популяции, отражает его структуру. Поскольку в книге учета особи представлены случайным образом, и выборка в 100 особей достаточно большая, то полученные результаты можно обобщить (экстраполировать) на всю популяцию.
Рассмотрим изменение структуры аллелофонда (то есть частот всех аллелей) и генофонда (то есть частот всех генотипов) данной популяции при чередовании поколений. Все самцы и самки дают аллели А и а в соотношении 0,9А : 0,1а.
В этом отличие генетики популяций от классической генетики. При рассмотрении законов Менделя изначально задавалось соотношение 1А : 1а, поскольку родители всегда были гомозиготны: АА и аа.
Для нахождения относительных частот генотипов составим решетку Пеннета. При этом учтем, что вероятность встречи аллелей в зиготе равна произведению вероятностей нахождения каждого аллеля.
Гаметы самок |
Гаметы самцов |
|
A pA = 0,9 |
a qa = 0,1 |
|
A pA = 0,9 |
AA p2 AA = 0,81 рыжие |
Aa pq Aa = 0,09 сиводушки |
a qa = 0,1 |
Aa pq Aa = 0,09 сиводушки |
aa q2 aa = 0,01 черно-бурые |
Найдем итоговые относительные и абсолютные частоты генотипов и фенотипов:
|
Генотипы (фенотипы) |
Сумма |
||
p2 AA рыжие |
2 pq Aa сиводушки |
q2 aa черно-бурые |
||
Относительные частоты |
0,81 |
0,18 |
0,01 |
1,00 |
Абсолютные частоты (в пересчете на 100 особей) |
81 |
18 |
1 |
100 |
Сравнивая полученный результат с первоначальным состоянием популяции, видим, что структура аллелофонда и генофонда не изменились. Таким образом, в рассмотренной популяции лис закон Харди-Вайнберга выполняется с идеальной точностью.
Поможем написать любую работу на аналогичную тему