В 80-х годах XX столетия в ядрах эукариотических клеток были открыты нитевидные структуры (В. Флемминг, Э. Страсбургер, Э.Ван Бенеден), названные В. Вальдейером (1888 г.) хромосомами (от греч. chroma — цвет, окраска, soma — тело). Этим термином было подчеркнуто сильное сродство хромосом по сравнению с другими клеточными органеллами к основным красителям. В течение последующих 10-15 лет большинством биологов было подтверждено, что именно хромосомы служат материальными носителями наследственности.
Хромосомы особенно четко видны во время делений клеток, однако факт непрерывности их существования и в неделящихся ядрах сомнений не вызывает. Основная особенность функциональных превращений хромосом состоит в цикле компактизации — декомпактизации. В компактизованном состоянии хромосомы представляют собой короткие толстые нити, видимые в световой микроскоп. В результате декомпактизации хромосомная нить становится невидимой в световой микроскоп, поэтому ядра многих живых клеток выглядят оптически пустыми. Превращения хромосом строго зависят от фаз клеточного цикла, поэтому их особенности могут рассматриваться только применительно к той или иной фазе цикла. Промежуток времени между окончанием одного клеточного деления — митоза и окончанием последующего называется митотическим циклом. Таким образом, митотический цикл включает митоз и промежуток между митозами — интерфазу. Интерфаза состоит из трех периодов: центрального — фазы синтеза ДНК (S), когда генетический материал удваивается, а также предсинтетического (G1) и постсинтетического (G2), после которого клетка вступает в митоз (M). После фазы синтеза ДНК в G2-периоде и в митозе, вплоть до анафазы, в хромосоме обнаруживаются две нити, называемые сестринскими хроматидами. Основной химический компонент хромосом — молекулы ДНК. Содержание ее в ядрах соматических клеток в два раза больше, чем в ядрах зрелых половых клеток. Эти два типа клеток отличаются друг от друга и по числу хромосом. Число хромосом — n в соматических клетках и количество ДНК — c (от англ. content — содержание) в них обозначают как диплоидное (2n хромосом, 2c ДНК), а в зрелых половых клетках — как гаплоидное (n хромосом, с ДНК). После фазы синтеза ДНК в соматических клетках число хромосом не изменяется (2n), однако каждая из них содержит две сестринские хроматиды, т. е. идентичные молекулы ДНК, поэтому содержание ДНК в ядрах G2-фазы 4 с.
Митоз, или непрямое деление, — основной способ размножения эукариотических клеток, обусловливающий, в частности, возможность увеличения их биомассы, рост и регенерацию. Митоз состоит из четырех фаз.
Первая — профаза — характеризуется началом цикла компактизации хромосом, который продолжается в течение всей этой фазы. Вследствие этого хромосомы становятся видимыми под микроскопом, причем уже в средней профазе митоза они представляются двойными структурами — сестринскими хроматидами, закрученными одна вокруг другой. К концу профазы исчезают ядрышко и ядерная мембрана.
Вторая — метафаза. Процесс компактизации хромосом продолжается и ведет к еще большему укорочению их длины. Хромосомы выстраиваются по экватору клетки. Хроматиды соединены между собой в центромере, называемой также первичной перетяжкой. Появляются нити митотического веретена, которые присоединяются к центромерам. Каждая центромера испытывает напряжение, поскольку нити веретена тянут ее к противоположным полюсам.
Полюса клетки формируются специальными органеллами — центросомами.
Третья — анафаза — начинается с разрыва центромеры, в результате чего сестринские хроматиды расходятся к разным полюсам клетки. С этого момента каждая пара сестринских хроматид получает название дочерних хромосом.
Четвертая — телофаза. Хромосомы достигают полюсов клетки, появляются ядерная мембрана, ядрышко. Происходят декомпактизация хромосом и восстановление структуры интерфазного ядра. Заканчивается митоз делением цитоплазмы и в типичных случаях — восстановлением исходной биомассы дочерних клеток.
Биологическая роль митоза состоит в обеспечении идентичной генетической информацией двух дочерних клеток. Это достижимо только благодаря циклу компактизации — декомпактизации, который и позволяет распределить наследственные молекулы в минимальном объеме митотических хромосом. В противном случае, учитывая размеры клетки (десятки или сотни кубических микрометров) и длину декомпактизированной хромосомы (сантиметры), каждое клеточное деление сопровождалось бы хаотическим переплетением хромосомного материала.
В эволюции эукариотических клеток, видимо, это обстоятельство и послужило причиной становления столь сложного генетического процесса, как митоз.
Поможем написать любую работу на аналогичную тему