Трансдукция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.
Фаги способны к реализации двух путей развития в бактериальной клетке:
Литический — после попадания в бактерию ДНК фага сразу же начинается его репликация, синтез белков и сборка готовых фаговых частиц, после чего происходит лизис клетки. Фаги, развивающиеся только по такому сценарию, называют вирулентными.
Лизогенный — попавшая в бактериальную клетку ДНК фага встраивается в её хромосому или существует в ней как плазмида, реплицируясь при каждом делении клетки. Такое состояние бактериофага носит название профаг. Система его репликации в этом случае подавлена синтезируемыми им самим репрессорами. При снижении концентрации репрессора профаг индуцируется и переходит к литическому пути развития. Реализующие подобную стратегию бактериофаги называются умеренными. Для некоторых из них стадия профага является обязательной, другие в некоторых случаях способные сразу развиваться по литическому пути.
Перенос фрагментов ДНК бактерии
Общая (неспецифическая) трансдукция
Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10−5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.
Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется. Это явление носит название абортивной трансдукции.
Специфическая трансдукция
Наиболее хорошо изучена специфическая трансдукция на примере фага λ. Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10−3—10−5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.
Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.
Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена — собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой (HFT от англ. high frequency transduction).
История изучения
Эстер Ледерберг была первой учёной, кому удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K-12 в 1950 году.
Собственно открытие трансдукции связано с именем американского учёного Джошуа Ледерберга. В 1952 году он совместно с Нортоном Циндером обнаружил общую трансдукцию. В 1953 Ледербергом и др. было показано существование абортивной трансдукции, в 1956 — специфической.
Фаговая Конверсия
изменение св-в, наступающее в результате инфекции бактерий умеренным фагом, причем гены, кодирующие новое св-во, находятся в геноме фага, а не бактерии. напр., инфекция коринебактерии дифтерии фагом приводит к синтезу транспортного полипептида дифтерийного токсина и превращению ее атоксигенного варианта в токсигенный.
Фаг λ (фаг лямбда) — умеренный бактериофаг, который заражает Escherichia coli. Был обнаружен Эстер Ледерберг в 1951 г.
Как только фаг попадает внутрь клетки хозяина, он может интегрировать себя в его ДНК. В этом состоянии λ называют профагом, он остается в геноме хозяина, внешне не проявляя своё присутствие. Профаг размножается с каждым делением клетки хозяина.
ДНК профага может экспрессироваться в тех случаях, когда наблюдаются признаки стресса в клетке-хозяине. Стресс может быть вызван голоданием, ядами (например антибиотикам), или другим факторами, которые могут повредить или уничтожить хозяина. В этом случае профаг активируется, выделяет себя из ДНК клетки-хозяина и вводит ее в литический цикл. Активированный фаг уничтожает ДНК хозяина и производит большое количества собственной мРНК, чтобы произвести множество единиц фага. Когда все ресурсы хозяина исчерпаны от построения новых фагов, клетка-хозяин разрушается, клеточная мембрана разрывается, и новые фаги выходят во внешнюю среду.
Интеграция фага λ происходит на специальном сайте в бактериальном геноме, названном attλ. Последовательность att сайта называют attB (состоит из компонентов B-O-B'), тогда как комплементарную последовательность в кольцевом геноме фага называют attP (состоит из компонентов P-O-P'). Сама интеграция — последовательный обмен (см. генетическая рекомбинация) происходит через образование структуры Холлидея и требует фагового белка Int и бактериального белка IHF (англ. integration host factor). И Int и IHF связываются с attP и формируют интрасому: ДНК-белковый комплекс, предназначенный для сайт-специфической рекомбинации ДНК фага и хозяина. Оригинальная BOB' последовательность заменяется интеграцией на B-O-P'-фаг ДНК-P-O-B'. ДНК фага теперь — часть генома хозяина.
Поможем написать любую работу на аналогичную тему
Реферат
Трансдукция. Виды трансдукции. Механизмы. Роль умеренного бактериофага. Фаговая конверсия.
От 250 руб
Контрольная работа
Трансдукция. Виды трансдукции. Механизмы. Роль умеренного бактериофага. Фаговая конверсия.
От 250 руб
Курсовая работа
Трансдукция. Виды трансдукции. Механизмы. Роль умеренного бактериофага. Фаговая конверсия.
От 700 руб