Нужна помощь в написании работы?

В нашем организме кровь непрерывно движется по замкнутой системе сосудов в строго определенном направлении. Это непрерывное движение крови называется кровообращением. Оно зависит от работы сердца, которое служит основным двигателем крови. Сердце нагнетает кровь в сосуды, обеспечивает ее движение и возвращение к самому сердцу. Строение и функции кровеносных сосудов. Стенки сосудов состоят из трех слоев, за исключением стенок самых мелких сосудов. Внутренняя поверхность сосудов покрыта тонким слоем плоских эпителиальных клеток. Этот слой удивительно гладкий, что уменьшает сопротивление и способствует беспрепятственному движению крови. Средний слой толще внутреннего. Он состоит из эластических волокон и клеток гладкой мышечной ткани. Благодаря сокращению мышечных клеток может меняться просвет кровеносных сосудов. Наружный слой образован рыхлой соединительной тканью. В наружном слое стенок сосудов проходят нервы, управляющие просветом сосудов. По выполняемой функции сосуды разделяются на артерии, вены и капилляры. Артерии - это сосуды, по которым кровь течет от сердца. Они выполняют функцию доставки крови к органам. Стенки артерий содержат много мышечных клеток, они очень эластичны (рис. 34). Это позволяет им выдерживать давление крови, выталкиваемой из сердца. Вены - это сосуды, по которым кровь течет к сердцу. Стенки вен содержат мало мышечных и эластических элементов. Стенки вен менее упруги, чем стенки артерий, но более растяжимы. В тонких сосудах - капиллярах происходит обмен жидкостями, питательными веществами и газами между кровью и тканями. Стенка капилляров состоит из одного слоя плоских клеток. В мембранах этих клеток имеются многочисленные мельчайшие отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене. В местах перехода мельчайших артерий в капилляры имеются скопления мышечных клеток. Сокращения этих клеток меняют просвет сосудов, открывают или прекращают поступление крови в капилляры. Обычно у человека в состоянии покоя открыто для кровотока только 20-30% капилляров. Во время усиленной работы органа открываются в кровоток дополнительные капиляры. Этот механизм особенно хорошо развит у спортсменов. Большой и малый круги кровообращения. Движение крови по двум замкнутым системам - большому и малому кругам кровообращения было открыто в XVII веке английским ученым Уильямом Гарвеем. Этот великий английский ученый явился родоначальником науки физиологии. Большой круг кровообращения. Путь крови от левого желудочка до правого предсердия называется большим кругом кровообращения. Из левого желудочка кровь" насыщенная кислородом (артериальная, яркая алая кровь), нагнетается в самый широкий сосуд - аорту. Оттуда кровь по артериям поступает в различные участки тела: мозг, органы брюшной полости, туловище, конечности. Протекая через капилляры большого круга кровообращения, кровь отдает кислород, присоединяет углекислый газ. В вены поступает кровь, бедная кислородом (венозная кровь по сравнению с артериальной более темная). Венозная кровь из туловища, нижних конечностей, органов брюшной полости через крупный сосуд - нижнюю полую вену попадает в правое предсердие. Сюда же через верхнюю полую вену поступает венозная кровь от головы, шеи, рук. Малый круг кровообращения. Путь крови от правого желудочка до левого предсердия значительно короче ранее описанного, и поэтому он получил название малого круга кровообращения. Из правого желудочка венозная кровь поступает в крупный сосуд - легочную артерию. В легких легочная артерия разветвляется на густую сеть капилляров, оплетающих дыхательные пузырьки. Венозная кровь, проходя через капилляры легких, насыщается кислородом, превращается в артериальную. По легочным венам в левое предсердие течет уже артериальная кровь. Подчеркнем, что малый круг является исключением и в остальных венах организма течет венозная, а в артериях ~ артериальная кровь. Правый и левый желудочки нагнетают кровь в сосуды одновременно, и она движется сразу по обоим кругам кровообращения. Лимфатическая система. Органы и ткани нашего тела пронизаны не только кровеносными, но и лимфатическими сосудами. В них находится прозрачная жидкость - лимфа. По своему составу лимфа отличается от крови тем, что в ней отсутствуют эритроциты, тромбоциты, а концентрация белков ниже, чем в плазме крови. В лимфе содержатся в большом количестве лимфоциты. Из капилляров лимфа поступает в лимфатические сосуды, которые несут ее в один большой сосуд, называемый грудным протоком. Из него лимфа изливается в крупные вены шеи. Лимфа движется в одном направлении благодаря сокращениям стенок лимфатических сосудов и клапанам, открывающимся только в сторону верхней полой вены. По ходу лимфатических сосудов в разных отделах нашего тела находятся специальные образования - лимфатические узлы. Наиболее важная функция лимфатической системы заключается в возвращении белков, воды и солей из тканей в кровь. Лимфатическая система участвует во всасывании из кишечника жиров, в создании иммунитета, в защите от болезнетворных микроорганизмов

 Сердце центральный орган кровообращения

Благодаря его работе кровы беспрерывно циркулирует внутри организма. Сердце начинает свою работу с первым вздохом новорожденного животного и заканчивает лишь с его смертью. Сердце представляет собой мышечный мешок разбитый двумя перегородками на четыре части. Правую (содержащую венозную кровь) и левую (содержащую артериальную кровь), и на предсердия, к которым кровь подтекает из соответствующих магистралей; и желудочков, которые выталкивают кровь. Между предсердиями и желудочками в левой и правой половинах сердца находятся атриовентрикулярные отверстия снабженные Двух- и трехстворчатым клапанами, предназначенными для свободного перехода крови из предсердий в желудочки и препятствующих оттоку крови в обратную сторону. Для тех же целей (односторонняя направленность кровотока) у артерий начинающихся от желудочков (аорта и легочная артерия) имеются полулунные клапаны.     СТРОЕНИЕ СТЕНКИ СЕРДЦА Стенка сердца состоит из трех слоев: наружного — эпикарда, среднего — миокарда и внутреннего — эндокарда. Наружная оболочка сердца. Эпикард, epicardium , представляет собой гладкую, тонкую и прозрачную оболочку. Он является висцеральной пластинкой, lamina visceralis, перикарда, pericardium. Соединительнотканная основа эпикарда в различных участках сердца, особенно в бороздах и в области верхушки, включает жировую ткань. При помощи соединительной ткани эпикард сращен с миокардом наибо- лее плотно в местах наименьшего скопления или отсутствия жировой ткани (см. «Перикард»). Внутренняя оболочка сердца, или эндокард. Эндокард, endocardium , образована из эластических волокон, среди которых располагаются соединительнотканные и гладкомышечные клетки. Со стороны полости сердца эндокард покрыт эндотелием. Эндокард выстилает все камеры сердца, плотно сращен с подлежащим мышечным слоем, следует за всеми его неровностями, образуемыми мясистыми трабекулами, гребенчатыми и сосочковыми мышцами, а также их сухожильными выростами. На внутреннюю оболочку отходящих от сердца и впадающих в него сосудов—полых и легочных вен, аорты и легочного ствола — эндокард переходит без резких границ. В предсердиях эндокард толще, чем в желудочках, особенно в левом предсердии, и тоньше там, где покрывает сосочковые мышцы с сухожильными хордами и мясистые трабекулы. В наиболее истонченных участках стенок предсердий, где в их мышечном слое образуются промежутки, эндокард близко соприкасается и даже срастается с эпикардом. В области фиброзных колец предсердно-желудочковых отверстий, а также отверстий аорты и легочного ствола эндокард путем удвоения своего листка—дупликатуры эндокарда — образует створки предсердно-желудочковых клапанов и полулунные клапаны легочного ствола и аорты. Волокнистая соединительная ткань между обоими листками каждой из створок и полулунных заслонок соединена с фиброзными кольцами и таким образом фиксирует к ним клапаны. Строение миокарда сердца  Сердце как орган состоит из трех оболочек: эндокарда, самой глубокой оболочки представленной соединительно-тканной оболочкой, покрытой эндотелием, миокарда -– мышечной оболочки сердца и эпикарда – наружной серозной- оболочки сердца. Миокард построен из сердечной поперечно – полосатой мышечной ткани и имеет ряд особенностей связанных с самой функцией сердца, как в целом, так и его отделов: - В различных отделах толщина сердечной мышцы неодинакова, например в левом желудочке стенка толще чем в правом. - Мышцы предсердия обособлены от мышц желудочков. - В желудочках и предсердиях существуют общие мышечные пласты. - В области венозных устьев преддверий располагаются сфинктеры. - Наличие в миокарде двух морфофункциональных типов мышечных волокон. Сердечная мышца при микроскопии выглядит подобно скелетной поперечно-полосатой мускулатуре. Наблюдается четко выраженная поперечная исчерченость и саркомерное строение. Различают два типа сердечных волокон: 1) типичные волокна – рабочего миокарда, 2) нетипичные волокна проводящей системы. Типические волокна: Рабочий миокард состоит из цепочки мышечных клеток – саркомеров соединенных друг с другом «конец в конец» и заключенных в общую саркоплазматическую мембрану. Соединенные саркомеры образуют миофибриллы. Контакт саркомеров осуществляется посредством вставочных дисков, благодаря чему волокна и имеют характерную поперечную исчерченность. Строение саркомеров: Саркомеры состоят из чередующихся темных (миозиновых) – А, и светлых (актиновых) - I полос. В центра полосы А расположена зона Н имеющая центральную Т-линию. Саркомеры соединяются между собой с помощью вставочных дисков – нексусов, которые и являются истинными границами клеток. Миозин содержащийся в полосе А, способен расщеплять АТФ до АДФ, то есть представляет собой аденозинтрифосфатазу, а так же способен образовывать с миозином обратимый комплекс актомиозин (в присутствии Са++ и образованием АДФ), чем и обусловлена сократимость сердечной мышцы.  Нетипические волокна.  Благодаря атипическим нервным волокнам реализуется автоматия сердца. Автоматия сердца – это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом. Морфологическим субстратом автоматии служат атипические сердечные волокна. – пейсмекеры, способные к периодической самогенерации мембранного потенциала. Атипические миоциты более крупные, нежели рабочие, в них содержится больше саркоплазмы с высоким содержанием гликогена, но мало миофибрилл и митохондрий. В атипических клетках преобладают ферменты, способствующие анаэробному гликолизу. Сами атипические клетки располагаются в строго определенных областях и образуют синатриальный (Кейт-Флерка) и атриовентрикулярный (Ашоффа-Тавара) узлы и пучек Гисса делящийся на ножки, которые разветвляются как волокна Пуркинье. Схема работы проводящей системы сердца: Типические миоциты во время сокращения поддерживают стабильный мембранный потенциал, в то время как потенциал нетипических миоцитов синатриального узла медленно понижается в связи с повышением проницаемости мембран для ионов натрия входящих внутрь волокон и ионов калия выходящих из них. При открытии натриевых ворот ионы Na+ лавинообразно устремляются внутрь волокон вызывая распространение нового потенциала. («дрейф» потенциала). После чего процесс повторяется. Способность к автоматии в различных участках сердца неодинакова и у атриовентрикулярного узла она уже ниже, а у пучка Гисса настолько мала, что соответствующая частота возникновения мембранного потенциала не совместима с жизнью. Физиологические особенности строения сердечной мышцы. Для обеспечения нормального существования организма в различных условиях сердце может работать в достаточно широком диапазоне частот (например у лошади в процессе бега частота сердечных толчков может увеличиваться в 4 – 5 раз). Такое возможно благодаря некоторым свойствам, таким как: 1 - Автоматия сердца, это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом. Описана выше. 2 – Возбудимость сердца, это способность сердечной мышцы возбуждаться от различных раздражителей физической или химической природы, сопровождающееся изменениями физико – химических свойств ткани. 3 – Проводимость сердца, осуществляется в сердце электрическим путем вследствие образования потенциала действия в клетках пейс-мейкерах. Местом перехода возбуждения с одной клетки на другую, служат нексусы. 4 – Сократимость сердца – Сила сокращения сердечной мышцы прямо пропорциональна начальной длине мышечных волокон 5 – Рефрактерность миокарда – такое временое состояние не возбудимости тканей При сбое сердечного ритма происходит мерцание, фибриляция – быстрые асинхронные сокращения сердца, что может привести к летальному исходу.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями