Нужна помощь в написании работы?

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

После регулировки нуля, т.е. устранения аддитивной погрешности, систематическая погрешность обращается в нуль на нижнем пределе измерения, а в диапазоне измерения принимает значения, являющиеся случайной функцией измеряемой величины.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и, главным образом, мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки.

1. Использование типовых шкал. Для подавляющего большинства рабочих и многих образцовых приборов используют типовые шкалы, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора. Если статическая характеристика линейна, то шкала оказывается равномерной. При регулировке параметрам элементов прибора экспериментально придают такие значения, при которых погрешность в точках регулировки становится равной нулю.

2. Индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.

Индивидуальную градуировку проводят в следующем порядке.

На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких, наперед заданных или выбранных значений. На циферблате наносят отметки, соответствующие положениям указателя при этих значениях измеряемой величины, а расстояния между отметками делят на равные части.

При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке она достигает значения, равного погрешности обратного хода.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

3. Градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины. В результате определяют зависимость числа делений шкалы, пройденных указателем от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода, градуировку осуществляют раздельно при прямом и обратном ходе.

Поделись с друзьями