Нужна помощь в написании работы?

По роду проводимых операций все методы интенсификации нефтеотдачи пластов можно классифицировать следующим образом:

1. ХИМИЧЕСКИЕ МЕТОДЫ. Наиболее распространёнными способа-ми химического воздействия являются солянокислотные обработки пластов и обработки пластов смесью соляной и плавиковой кислот. Все они основаны на химических реакциях взаимо-действия породы с химическими веществами, в результате которой часть породы растворяется увеличивая размеры поровых каналов и трещин.

2. ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ. Основаны на промывках призабойной зоны пласта водными растворами поверхностно-активных веществ и других добавок, с помощью которых из пор, поровых каналов и трещин удаляют остаточную воду и мелкодисперсные твёрдые частицы.

3. ТЕПЛОВЫЕ МЕТОДЫ. Заключаются в удалении со стенок поровых каналов осевший парафин и смолы. С помощью тепла так же интенсифицируются химические методы воздействия на пласт.

4. МЕХАНИЧЕСКИЕ МЕТОДЫ. Позволяют создать в продуктив-ных пластах новые каналы и расширить уже существующие. На месторождениях ОАО»ЮНГ»они основаны на применении гидравли-ческого разрыва пласта.

 ХИМИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА

За последние годы разнообразие кислот используемых для обработки призабойной зоны пласта увеличилось. Многообразие видов кислотных обработок объясняется различием в геолого-физических характеристиках месторождений. Обобщение результатов применения тех или иных видов кислотных обработок в различных нефтедобывающих районах страны позволяет сделать вывод о том, что эффективность их применения в значительной степени зависит от того, насколько характеристика применяемого метода учитывает геолого-физические характеристики месторождения. В настоящее время применяют сульфаминовую, углекислую и серную кислоты. Существуют так же такие виды кислотных обработок, как:

1. Соляно-кислотная обработка:

- кислотные ванны;

- простые кислотные обработки;

- кислотные обработки под давлением;

- глубокая кислотная обработка;

- пенокислотная обработка;

- кислотная обработка пластов с низкой температурой;

2. Глинокислотная обработка.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

ОБРАБОТКА СОЛЯНОЙ КИСЛОТОЙ.

Сущность метода основана на способности соляной кислоты (HCl) вступать в реакцию с карбонатами составляющими коллектора:

С КАРБОНАТОМ:

CaCO3 + 2HCl = CaCl2 + CO2 +H2O;

С ДОЛОМИТОМ:

CaMg(CO3)2 + 4HCl = CaCl2 + MgCl2 + 2CO2 + 2H2O;

Образующиеся в результате реакции хлористый кальций и хлористый магний легко растворимы в воде в больших количествах, выделяющийся газ оказывает дополнительные воздействия на пластовую систему.

Солянокислотные обработки без ограничений приемлемы

для карбонатных коллекторов. В терригенных коллекторах с высоким содержанием карбонатов (10 % - 25%) метод обеспечивает необходимый эффект без дополнительного химического воздействия на силикатную составляющую породы, в коллекторах с незначительными карбонатными включениями солянокислотные обработки используют для очистки от кальцитовых включений в призабойной зоне пласта.

ОБРАБОТКА ГЛИНОКИСЛОТОЙ

Глинокислота - это смесь соляной (10%-15%) и фтористо-водородной (2%-5%) кислот. Для приготовления глинокислоты используют бифторид-фторид аммония. При его введении в раствор соляной кислоты, в результате реакции с последней, образуется фтористоводородная кислота. Глинокислота, проникая в призабойную зону, активно действует на карбонатные и глинистые минералы, а так же на кварцевые зёрна.

Фтористо-водородная часть действует на карбонатные и

силикатные породы по следующим уравнениям:

Фтористо-водородная кислота - Кварц:

SiO2 + 4HF = 2H2O + SiF4;

Фтористо-водородная кислота – Каолин:

H4Al2SiO9 + 14HF = 2AlF3 + 2SiF4 + 9H2O;

Для предупреждения образования осадков при глинокислотных обработках предлагается проведение предварительной обработки призабойной зоны соляной кислотой с целью растворения и удаления углекислых солей кальция и магния при большом содержании карбонатных минералов. В рабочем растворе глинокис-лоты должно быть не больше 3% фтористо-водородной и 10%-12% соляной кислот.

При использовании бифторид - фторида аммония для при-готовления глинокислоты, фтористо-водородная кислота образуется непосредственно в растворе в результате реакции с соляной кислотой.

NH4HF + HCl =2HF + NH4Cl;

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА

Проницаемость призабойной зоны пласта может снизиться вследствие проникновения в неё воды (при глушении скважины, удалении песчаных пробок и других работах). Вода может удерживаться в порах молекулярными и капиллярными силами, понижая проницаемость пласта. В призабойной зоне пласта могут образовываться эмульсии, тогда поровые каналы закупориваются парафинами, смолами и асфальтенами.

В данном случае восстановить проницаемость можно обработкой призабойной зоны пласта поверхностно-активными веществами, которые используют в виде водных растворов. При закачке в пласт, поверхностно-активные вещества адсорбируются на поверхности пор и каналов, снижают, на границе»нефть-твёрдая поверхность»,»нефть-вода», поверхностное напряжение.

ТЕПЛОВЫЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПЛАСТ

ТЕРМОКИСЛОТНАЯ ОБРАБОТКА СКВАЖИНЫ

Отложившиеся в скважине и призабойной зоне пласта парафин, смолы и асфальтены препятствуют взаимодействию кислоты с породой. Для расплавления этих отложений применяют термокислотный метод. Используют вещества, которые вступая во взаимодействие с кислотой выделяли бы тепло (например, магний - Mg).

Mg + 2HCl + H2O = MgCl2 + H2 + 462,8 (кДж);

При растворении 1 (кг) магния выделяется 19 МДж теплоты, кислота при взаимодействии полностью нейтрализуется. При термокислотной обработке соляная кислота через насосно-компрессорные трубы попадает в наконечник, спущенный в трубы на насосных штангах, реагирует с магнием и в нагретом виде через фильтр поступает на стенки скважины и призабойную зону пласта.

ПРОГРЕВ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА

Закачка нагретой нефти. Для эффективного прогрева призабойной зоны пласта требуется 15 – 30 (куб. м) жидкости, нагретой до 90 – 95 (град. С). Жидкость (флюид) нагретой в передвижной пароустановке закачивают в скважину и осуществля-ют промывку призабойной зоны пласта, а затем продавливают в пласт.

Прогрев паром. Один из самых эффективных способов теплового воздействия на пласт. Водяной пар под давлением 8 – 15 (МПа) закачивают в пласт, если:

- глубина залегания пласта не более 1200 (м);

- толщина пласта не менее 15 (м);

- вязкость нефти при пластовых условиях выше 0,2 (Пас);

- плотность нефти в пласте 0,9 – 0,93 (т/куб. м);

- остаточная нефтенасыщенность пласта до начала

закачки пара не менее 50 (%);

МЕХАНИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПЛАСТ

ИСПОЛЬЗОВАНИЕ ВЗРЫВНЫХ ВЕЩЕСТВ

К ним относятся:

- пулевая перфорация;

- кумулятивная перфорация;

- общее торпедирование;

- направленное торпедирование;

-  направленная перфорация взрывными снарядами;

При недостаточной нефтеотдаче можно повторно произвести обычную перфорацию пулевым перфоратором. Для повышения её эффективности скважину заполняют не глинистыми растворами, а жидкостями не загрязняющими вновь созданные перфорационные отверстия.

При наличии твёрдых и плотных пород можно торпедировать продуктивный пласт взрывчатым веществом спускаемым в интервал залегания пласта в гильзах, оснащённых электрическими взрывателями. Гильзы изготавливают из металла, асбеста или пластмассы. В качестве взрывчатых веществ наиболее часто применяют нитроглицерин, динамит, тротил и т.п.. Взрыв может создать в продуктивном пласте каверны и трещины. Таким образом, увеличивается проницаемость пласта в зоне с большим радиусом (создание микро- и макротрещин, которые могут распространяться на десятки метров).

Направленное торпедирование можно осуществить за счёт соответствующей формы снаряда и вставок на пути взрывной волны. В зависимости от необходимости можно использовать торпеды: бокового рассеянного действия, бокового сосредоточенного действия и вертикального действия.

Перфораторы с разрывными снарядами создают круглые отверстия в колонне и цементном камне проникая в породу, и взрываясь образуют каверны и трещины.

Кумулятивный перфоратор состоит из устройства, в ячейках которого содержатся заряды кумулятивного действия. Каждая ячейка с противоположной стороны взрывателя оснащена выемкой соответствующего профиля (например, в форме конуса). Таким образом газообразные продукты взрыва распространяются вдоль оси заряда в вид мощной струи, которая создаёт в колонне, цементе и породе канал соответствующего направления.

ГИДРОПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ

Гидропескоструйная перфорация основана на использовании гидромониторного эффекта, создаваемого струёй абразивной песчано-жидкостной смеси, вытекающей с большой скоростью из насадки. Первые работы по внедрению метода были выполнены ВНИИнефтью в 1959 году. В последующие годы гидропеско-струйная перфорация получила довольно широкое распространение как высокоэффективный способ вскрытия пластов.

Гидропескоструйная перфорация по сравнению с кумулятивной является менее производительным процессом, требующим использования специальной техники, поэтому её применяют в тех случаях, когда другие методы не дали нужного эффекта.

Кроме увеличения производительности добывающих скважин, гидропескостуйную перфорацию применяют для:

- выполнения глубоких кольцевых и вертикальных щелей, способствующих образованию трещин при гидроразрыве пласта;

- срезания обсадных, бурильных и насосно-компрессорных труб;

- разрушения металла на забое, а так же твёрдых пробок в скважине;

- расширения диаметра в необсаженой части скважины;

Струя, направленная перпендикулярно к стенке обсадной колонны, вытекает из насадки специального устройства - гидропескоструйного перфоратора.

ВИБРАЦИОННОЕ ВОЗДЕЙСТВИЕ НА ПЛАСТ

Создание в призабойной зоне скважины вибрационных волн при помощи специального вибратора, повышающего проницаемость призабойной зоны пласта. Этот метод разработанный в МИНХ и ГП (в настоящее время РГУНГ им. И.М. Губкина) используют в добывающих скважинах и в нагнетательных скважинах.

Для создания резких колебаний расхода жидкости (вибро-ударных волн) применяют гидравлические вибраторы золотникового типа - ГВЗ. В корпусе ГВЗ жёстко на резьбе закреплён ствол, имеющий щелевые отверстия по образующей цилиндра. На стволе на подшипнике качения свободно вращается цилиндрический золотник, так же имеющий щелевые отверстия выполненные под углом к образующей.

При прокачке золотник вращается и периодически то открывает, то закрывает проход потоку жидкости в результате создаются небольшие гидравлические удары, число которых может быть доведено до 30 000 в минуту. В качестве рабочей жидкости применяют нефть, раствор соляной кислоты, керосин или их смеси.

За длительный период разработки нефтяных месторождений в Нефтеюганском районе Тюменской области произошло значительное ухудшение структуры запасов. По состоянию на начало 1996 года 54 % остаточных запасов нефти содержится в низкопродуктивных пластах с проницаемостью менее 15 мД. Степень выработки их не превышает 5 %. Эти трудноизвлекаемые запасы требуют применения эффективных технологий разработки. Таковым в первую очередь является гидравлический разрыв пласта, поскольку традиционные методы интенсификации нефтеотдачи пластов недостаточно эффективны.

Технология гидроразрыва пласта является методом интенсификации текущей нефтедобычи для низкопроницаемых залежей и повышения в конечном итоге коэффициента нефте-отдачи по месторождению. Проведение гидроразрыва в отдельной скважине ведёт к увеличению её добывающих возможностей значи-тельно выше естественной, обеспечивая дополнительную добычу нефти.

Поделись с друзьями