По роду проводимых операций все методы интенсификации нефтеотдачи пластов можно классифицировать следующим образом:
1. ХИМИЧЕСКИЕ МЕТОДЫ. Наиболее распространёнными способа-ми химического воздействия являются солянокислотные обработки пластов и обработки пластов смесью соляной и плавиковой кислот. Все они основаны на химических реакциях взаимо-действия породы с химическими веществами, в результате которой часть породы растворяется увеличивая размеры поровых каналов и трещин.
2. ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ. Основаны на промывках призабойной зоны пласта водными растворами поверхностно-активных веществ и других добавок, с помощью которых из пор, поровых каналов и трещин удаляют остаточную воду и мелкодисперсные твёрдые частицы.
3. ТЕПЛОВЫЕ МЕТОДЫ. Заключаются в удалении со стенок поровых каналов осевший парафин и смолы. С помощью тепла так же интенсифицируются химические методы воздействия на пласт.
4. МЕХАНИЧЕСКИЕ МЕТОДЫ. Позволяют создать в продуктив-ных пластах новые каналы и расширить уже существующие. На месторождениях ОАО»ЮНГ»они основаны на применении гидравли-ческого разрыва пласта.
ХИМИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА
За последние годы разнообразие кислот используемых для обработки призабойной зоны пласта увеличилось. Многообразие видов кислотных обработок объясняется различием в геолого-физических характеристиках месторождений. Обобщение результатов применения тех или иных видов кислотных обработок в различных нефтедобывающих районах страны позволяет сделать вывод о том, что эффективность их применения в значительной степени зависит от того, насколько характеристика применяемого метода учитывает геолого-физические характеристики месторождения. В настоящее время применяют сульфаминовую, углекислую и серную кислоты. Существуют так же такие виды кислотных обработок, как:
1. Соляно-кислотная обработка:
- кислотные ванны;
- простые кислотные обработки;
- кислотные обработки под давлением;
- глубокая кислотная обработка;
- пенокислотная обработка;
- кислотная обработка пластов с низкой температурой;
2. Глинокислотная обработка.
ОБРАБОТКА СОЛЯНОЙ КИСЛОТОЙ.
Сущность метода основана на способности соляной кислоты (HCl) вступать в реакцию с карбонатами составляющими коллектора:
С КАРБОНАТОМ:
CaCO3 + 2HCl = CaCl2 + CO2 +H2O;
С ДОЛОМИТОМ:
CaMg(CO3)2 + 4HCl = CaCl2 + MgCl2 + 2CO2 + 2H2O;
Образующиеся в результате реакции хлористый кальций и хлористый магний легко растворимы в воде в больших количествах, выделяющийся газ оказывает дополнительные воздействия на пластовую систему.
Солянокислотные обработки без ограничений приемлемы
для карбонатных коллекторов. В терригенных коллекторах с высоким содержанием карбонатов (10 % - 25%) метод обеспечивает необходимый эффект без дополнительного химического воздействия на силикатную составляющую породы, в коллекторах с незначительными карбонатными включениями солянокислотные обработки используют для очистки от кальцитовых включений в призабойной зоне пласта.
ОБРАБОТКА ГЛИНОКИСЛОТОЙ
Глинокислота - это смесь соляной (10%-15%) и фтористо-водородной (2%-5%) кислот. Для приготовления глинокислоты используют бифторид-фторид аммония. При его введении в раствор соляной кислоты, в результате реакции с последней, образуется фтористоводородная кислота. Глинокислота, проникая в призабойную зону, активно действует на карбонатные и глинистые минералы, а так же на кварцевые зёрна.
Фтористо-водородная часть действует на карбонатные и
силикатные породы по следующим уравнениям:
Фтористо-водородная кислота - Кварц:
SiO2 + 4HF = 2H2O + SiF4;
Фтористо-водородная кислота – Каолин:
H4Al2SiO9 + 14HF = 2AlF3 + 2SiF4 + 9H2O;
Для предупреждения образования осадков при глинокислотных обработках предлагается проведение предварительной обработки призабойной зоны соляной кислотой с целью растворения и удаления углекислых солей кальция и магния при большом содержании карбонатных минералов. В рабочем растворе глинокис-лоты должно быть не больше 3% фтористо-водородной и 10%-12% соляной кислот.
При использовании бифторид - фторида аммония для при-готовления глинокислоты, фтористо-водородная кислота образуется непосредственно в растворе в результате реакции с соляной кислотой.
NH4HF + HCl =2HF + NH4Cl;
ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА
Проницаемость призабойной зоны пласта может снизиться вследствие проникновения в неё воды (при глушении скважины, удалении песчаных пробок и других работах). Вода может удерживаться в порах молекулярными и капиллярными силами, понижая проницаемость пласта. В призабойной зоне пласта могут образовываться эмульсии, тогда поровые каналы закупориваются парафинами, смолами и асфальтенами.
В данном случае восстановить проницаемость можно обработкой призабойной зоны пласта поверхностно-активными веществами, которые используют в виде водных растворов. При закачке в пласт, поверхностно-активные вещества адсорбируются на поверхности пор и каналов, снижают, на границе»нефть-твёрдая поверхность»,»нефть-вода», поверхностное напряжение.
ТЕПЛОВЫЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПЛАСТ
ТЕРМОКИСЛОТНАЯ ОБРАБОТКА СКВАЖИНЫ
Отложившиеся в скважине и призабойной зоне пласта парафин, смолы и асфальтены препятствуют взаимодействию кислоты с породой. Для расплавления этих отложений применяют термокислотный метод. Используют вещества, которые вступая во взаимодействие с кислотой выделяли бы тепло (например, магний - Mg).
Mg + 2HCl + H2O = MgCl2 + H2 + 462,8 (кДж);
При растворении 1 (кг) магния выделяется 19 МДж теплоты, кислота при взаимодействии полностью нейтрализуется. При термокислотной обработке соляная кислота через насосно-компрессорные трубы попадает в наконечник, спущенный в трубы на насосных штангах, реагирует с магнием и в нагретом виде через фильтр поступает на стенки скважины и призабойную зону пласта.
ПРОГРЕВ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА
Закачка нагретой нефти. Для эффективного прогрева призабойной зоны пласта требуется 15 – 30 (куб. м) жидкости, нагретой до 90 – 95 (град. С). Жидкость (флюид) нагретой в передвижной пароустановке закачивают в скважину и осуществля-ют промывку призабойной зоны пласта, а затем продавливают в пласт.
Прогрев паром. Один из самых эффективных способов теплового воздействия на пласт. Водяной пар под давлением 8 – 15 (МПа) закачивают в пласт, если:
- глубина залегания пласта не более 1200 (м);
- толщина пласта не менее 15 (м);
- вязкость нефти при пластовых условиях выше 0,2 (Пас);
- плотность нефти в пласте 0,9 – 0,93 (т/куб. м);
- остаточная нефтенасыщенность пласта до начала
закачки пара не менее 50 (%);
МЕХАНИЧЕСКИЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПЛАСТ
ИСПОЛЬЗОВАНИЕ ВЗРЫВНЫХ ВЕЩЕСТВ
К ним относятся:
- пулевая перфорация;
- кумулятивная перфорация;
- общее торпедирование;
- направленное торпедирование;
- направленная перфорация взрывными снарядами;
При недостаточной нефтеотдаче можно повторно произвести обычную перфорацию пулевым перфоратором. Для повышения её эффективности скважину заполняют не глинистыми растворами, а жидкостями не загрязняющими вновь созданные перфорационные отверстия.
При наличии твёрдых и плотных пород можно торпедировать продуктивный пласт взрывчатым веществом спускаемым в интервал залегания пласта в гильзах, оснащённых электрическими взрывателями. Гильзы изготавливают из металла, асбеста или пластмассы. В качестве взрывчатых веществ наиболее часто применяют нитроглицерин, динамит, тротил и т.п.. Взрыв может создать в продуктивном пласте каверны и трещины. Таким образом, увеличивается проницаемость пласта в зоне с большим радиусом (создание микро- и макротрещин, которые могут распространяться на десятки метров).
Направленное торпедирование можно осуществить за счёт соответствующей формы снаряда и вставок на пути взрывной волны. В зависимости от необходимости можно использовать торпеды: бокового рассеянного действия, бокового сосредоточенного действия и вертикального действия.
Перфораторы с разрывными снарядами создают круглые отверстия в колонне и цементном камне проникая в породу, и взрываясь образуют каверны и трещины.
Кумулятивный перфоратор состоит из устройства, в ячейках которого содержатся заряды кумулятивного действия. Каждая ячейка с противоположной стороны взрывателя оснащена выемкой соответствующего профиля (например, в форме конуса). Таким образом газообразные продукты взрыва распространяются вдоль оси заряда в вид мощной струи, которая создаёт в колонне, цементе и породе канал соответствующего направления.
ГИДРОПЕСКОСТРУЙНАЯ ПЕРФОРАЦИЯ
Гидропескоструйная перфорация основана на использовании гидромониторного эффекта, создаваемого струёй абразивной песчано-жидкостной смеси, вытекающей с большой скоростью из насадки. Первые работы по внедрению метода были выполнены ВНИИнефтью в 1959 году. В последующие годы гидропеско-струйная перфорация получила довольно широкое распространение как высокоэффективный способ вскрытия пластов.
Гидропескоструйная перфорация по сравнению с кумулятивной является менее производительным процессом, требующим использования специальной техники, поэтому её применяют в тех случаях, когда другие методы не дали нужного эффекта.
Кроме увеличения производительности добывающих скважин, гидропескостуйную перфорацию применяют для:
- выполнения глубоких кольцевых и вертикальных щелей, способствующих образованию трещин при гидроразрыве пласта;
- срезания обсадных, бурильных и насосно-компрессорных труб;
- разрушения металла на забое, а так же твёрдых пробок в скважине;
- расширения диаметра в необсаженой части скважины;
Струя, направленная перпендикулярно к стенке обсадной колонны, вытекает из насадки специального устройства - гидропескоструйного перфоратора.
ВИБРАЦИОННОЕ ВОЗДЕЙСТВИЕ НА ПЛАСТ
Создание в призабойной зоне скважины вибрационных волн при помощи специального вибратора, повышающего проницаемость призабойной зоны пласта. Этот метод разработанный в МИНХ и ГП (в настоящее время РГУНГ им. И.М. Губкина) используют в добывающих скважинах и в нагнетательных скважинах.
Для создания резких колебаний расхода жидкости (вибро-ударных волн) применяют гидравлические вибраторы золотникового типа - ГВЗ. В корпусе ГВЗ жёстко на резьбе закреплён ствол, имеющий щелевые отверстия по образующей цилиндра. На стволе на подшипнике качения свободно вращается цилиндрический золотник, так же имеющий щелевые отверстия выполненные под углом к образующей.
При прокачке золотник вращается и периодически то открывает, то закрывает проход потоку жидкости в результате создаются небольшие гидравлические удары, число которых может быть доведено до 30 000 в минуту. В качестве рабочей жидкости применяют нефть, раствор соляной кислоты, керосин или их смеси.
За длительный период разработки нефтяных месторождений в Нефтеюганском районе Тюменской области произошло значительное ухудшение структуры запасов. По состоянию на начало 1996 года 54 % остаточных запасов нефти содержится в низкопродуктивных пластах с проницаемостью менее 15 мД. Степень выработки их не превышает 5 %. Эти трудноизвлекаемые запасы требуют применения эффективных технологий разработки. Таковым в первую очередь является гидравлический разрыв пласта, поскольку традиционные методы интенсификации нефтеотдачи пластов недостаточно эффективны.
Технология гидроразрыва пласта является методом интенсификации текущей нефтедобычи для низкопроницаемых залежей и повышения в конечном итоге коэффициента нефте-отдачи по месторождению. Проведение гидроразрыва в отдельной скважине ведёт к увеличению её добывающих возможностей значи-тельно выше естественной, обеспечивая дополнительную добычу нефти.
Поможем написать любую работу на аналогичную тему