Нужна помощь в написании работы?

Применяемые в настоящее время станки-качалки имеют кинематические схемы, соответствующие показанной на рис. 5.12 при уравновешивании с помощью грузов или же на рис. 5.13 при гидропневматическом уравновешивании. Основными элементами механизма станка-качалки являются см. рис. 5.12 и 5.13 привод 7, клиноременная передача 2, редуктор 3 и шарнирный четырехзвенный механизм 4, преобразующий вращательное движение вала двигателя в возвратно-поступательное движение точки подвеса штанг. Клиноременная передача и редуктор обеспечивают получение необходимого числа оборотов кривошипного вала, соответственно числу ходов.

Основное внимание инженера-конструктора при проектировании кинематической схемы станка-качалки должно быть обращено на правильность проектирования шарнирного четырехзвенного механизма, чтобы движение точки подвеса штанг происходило по определенному закону, обеспечивающему; нормальную и заданную работу глубинного насоса, колонны насосных штанг и т.д.

Шарнирный четырехзвенный механизм станка-качалки является кривошипно-коромысловым механизмом с односторонним удлиненным в противоположном направлении, коромыслом (совокупность звеньев к и к1 называется балансиром). Этот механизм должен обеспечить получение заданной длины хода, точки подвеса штанг, S.

Из рисунков видно см. рис. 5.12, 5.13.

где δ0 — угол размаха балансира; к1, — переднее плечо балансира.

При определенных длинах хода и переднего плеча угол размаха балансира будет иметь значение:

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Для получения этого угла размаха балансира при определенной длине заднего плеча можно построить многочисленные четырехзвенные механизмы, центр вращения кривошипа которых расположен на участке плоскости, ограниченном только углом D1CB2 = 1800 - δ0 см. рис. 5.14.

Эти четырехзвенные кривошипно-коромысловые механизмы отличаются друг от друга размерами звеньев, которые определяют габариты, а следовательно, вес станка-качалки. Но от положения центра вращения кривошипного вала зависят, кроме того, кинематические и динамические показатели станка-качалки.

Возьмем два крайних положения точки соединения шатуна с коромыслом, так, чтобы точка B1 соответствовала нижнему положению точки подвеса штанг, а точка В2 — верхнему положению этой точки. Очевидно, горизонтальная линия, проходящая через точку С, является биссектрисой угла δ0 размаха балансира. Проведем прямую, проходящую через точки B1 и В2 которая будет перпендикулярна биссектрисе угла δ0.

Поместим центр вращения О кривошипа на расстояниях а и h от упомянутых выше взаимно перпендикулярных прямых см. рис. 5.14. Так как в крайних положениях механизма направления шатуна и кривошипа совпадают, то, соединяя центр вращения О с крайними точками В1, и В2, получим:

Таким образом, четырехзвенник в крайнем нижнем положении переднего плеча балансира обращается в треугольник ОВ2С со сторонами l + r, к и р, а в верхнем крайнем положении — в треугольник ОВ2С со сторонами l - r, к и р.

Пересекая ОВ1 из центра О радиусом ОВ2, получим

Отсюда величина радиуса кривошипа будет

а длина шатуна

Таким образом, имея кинематическую схему станка при крайних нижнем и верхнем положениях точки подвеса штанг, можно графически определить длину кривошипа и шатуна.

Угол θ между направлениями ОВ1 и ОВ2 называется углом несимметричности цикла и имеет определенное влияние на работу станка-качалки и всей глубинно насосной установки.

Поделись с друзьями
Добавить в избранное (необходима авторизация)