Химические реакции протекают с разными скоростями. Свеча, находящаяся в воздухе, не вступает с ним во взаимодействие, но, если ее зажечь, начинается реакция. Смесь бытового газа и воздуха в закрытой комнате не взаимодействует, но если зажечь спичку, может произойти сильный взрыв. Кусок железа ржавеет, т.е. реагирует с воздухом очень медленно, а кусок белого фосфора воспламеняется на воздухе и т.д. Скорость реакции зависит от:
природы реагирующих веществ;
концентрации реагирующих веществ;
температуры.
Реакции, при которых не происходит перераспределения связей, обычно при комнатной температуре протекают быстро. Реакции, при которых происходит разрыв связей, обычно при комнатной температуре протекают медленно.
Было установлено: во многих случаях при повышении концентрации реагирующих веществ скорость реакции возрастает. Это связано с тем, что число столкновений между реагирующими частицами — атомами, молекулами или ионами — становится больше. А столкновение частиц — необходимое условие протекания химических реакций. В результате столкновений могут происходить перегруппировка атомов и возникновение новых химических связей, в результате чего образуются новые вещества.
Температура заметно влияет на скорость химических реакций. Когда зажигают свечу, температура ее около фитиля повышается. При реакции горения выделяется тепло, достаточное для поддержания высокой температуры. Таким образом, обеспечивается определенная скорость реакции. Так же можно объяснить, почему происходит взрыв смеси бытового газа и воздуха от зажженной спички: около горящего конца спички температура газа повышается и начинается реакция, протекающая все быстрее с выделением тепла. За счет этого тепла повышается температура ближайших областей, и реакция еще больше ускоряется. Скорость реакции продолжает возрастать до тех пор, пока не достигнет скорости взрыва — наиболее быстрой реакции, возможной по теории столкновений. Время, затраченное на это, — примерно одна миллисекунда. Повышение температуры приводит к увеличению скорости реакции.
Было обнаружено, что столкновение приводит к химической реакции, если сталкивающиеся молекулы обладают энергией, превышающей некоторую определенную величину. Подобно движущимся по трассе машинам с большой скоростью, столкновение молекул с большой энергией приводит к «молекулярной аварии», которую принято называть химической реакцией.
Многие реакции протекают очень медленно, если просто смешать реагирующие вещества, но их можно значительно ускорить путем введения некоторых других веществ, называемых катализаторами. При реакции они не расходуются. При этом большее число молекул может преодолеть более низкий энергетический барьер, что приводит к увеличению скорости реакции. Он только ускоряет реакцию, которая может происходить и без него, но значительно медленнее.
Очень большое число катализаторов, называемых ферментами, содержится в живых тканях. Наиболее известные ферменты пищеварительной системы — птиалин, содержащийся в слюне, и пепсин, вырабатываемый поджелудочной железой. Оба эти фермента способствуют разрушению больших молекул, например, крахмала и белка, на более простые молекулы, которые могут непосредственно усваиваться клетками организма. Помимо сравнительно небольшого числа ферментов пищеварительной системы, существует большое количество других ферментов, принимающих участие в биохимических реакциях. Специфическое действие катализатора во многих случаях еще не выяснено. Поиск подходящего катализатора для каждой реакции обычно требует большой экспериментальной работы.
Под равновесием обычно понимается состояние, в котором свойства системы, определенные экспериментально, не претерпевают дальнейшего изменения даже по истечении определенного промежутка времени. Таким образом, равновесие характеризуется постоянством макроскопических свойств. Равновесие может осуществляться только в замкнутой системе, содержащей постоянное количество вещества при постоянной температуре. Постоянство свойств обусловлено равновесием между двумя противоположными процессами, которые не прекращаются и после установления равновесия, — растворимостью и осаждением. При равновесии микроскопические процессы продолжаются, но они взаимно уравновешиваются, поэтому никаких макроскопических изменений не наблюдается.
Факторами, влияющими на состояние равновесия, являются концентрация и температура. Именно от этих факторов зависит скорость реакции. Равновесие достигается, когда скорости прямой и обратной реакций становятся одинаковыми. Любой фактор, который изменяет скорость прямой или обратной реакции, может оказывать влияние на состояние равновесия. При изменении концентрации реагирующих веществ (или продуктов реакции) изменяются и их равновесные концентрации. При изменении температуры тоже изменяются равновесные концентрации. Катализаторы, повышающие скорости реакции, однако, не изменяют состояния равновесия. Следовательно, любой катализатор оказывает одинаковое влияние на скорости прямой и обратной реакций.
Мы уже рассмотрели, что то или иное изменение приводит к изменению равновесия, но в каком направлении будет смещаться равновесие? И какова степень влияния, т.е. какие новые равновесные концентрации будут создаваться в изменившихся условиях? Качественно предсказать влияние изменений внешних условий можно с помощью правила, впервые сформулированного в 1884 г. французским химиком А. Ле Шателье. Это правило называется принципом Ле Шателье, или принципом подвижного равновесия: если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-нибудь из условий, определяющих равновесие, то равновесие смещается в том направлении, в каком эффект воздействия уменьшается.
Принцип Ле Шателье позволяет качественно судить о состоянии равновесия.
Поможем написать любую работу на аналогичную тему