Нужна помощь в написании работы?

Исторически сложились два основных подхода к пониманию пространства и времени. Первый подход — субстанциональный. Пространство и время понимаются в данном случае как нечто самостоятельно существующее наряду с материей, как ее «вместилища». При этом пространство — это «чистая протяженность», а время— «чистая длительность». Такой позиции придерживался Демокрит, однако свое всестороннее развитие эта концепция получила у Ньютона и в классической механике в целом.

Второй подход — реляционная концепция пространства и времени. Ее развивали Аристотель, Лейбниц и другие. Согласно этому подходу, пространство и время — не особые субстанциональные сущности, а формы существования материальных объектов: пространство выражает сосуществование объектов, а время — последовательность их состояний. Реляционный подход был воспринят релятивистской физикой, в которой пространство и время стали пониматься как общие формы координации материальных объектов и их состояний (пространство — совокупность отношений, выражающих координацию сосуществования объектов, их расположение друг относительно друга, а время — совокупность отношений, выражающих координацию сменяющих друг друга состояний, их последовательность и длительность).

В классической механике для описания механического движения необходимо выявление координат движущегося тела, что требует введения понятия «система отсчета». Существуют физические различные типы систем отсчета: инерциальные системы (движущиеся равномерно, прямолинейно относительно друг друга) и неинерциальные (движущиеся с ускорением). Принцип относительности Галилея утверждает физическую эквивалентность всех инерциальных систем отсчета: состояние равномерного, прямолинейного движения никак не сказывается на происходящих в системе механических процессах и никакими механическими экспериментами, проводимыми внутри системы, нельзя определить, покоится она или движется равномерно и прямолинейно.

Но существуют ли инерциальные системы в действительности? Поиски ответа на этот вопрос и привели к понятию абсолютного пространства, которое представлялось неподвижным.

Кроме того, пространственные и временные координаты входят в уравнения классической механики неравноправным образом: временная координата в движущейся системе зависит только от временной координаты в неподвижной и никак не связана с пространственными координатами, т.е. время мыслится как существующее независимо от пространства. Основными метрическими характеристиками пространства и времени являются расстояние между двумя точками в пространстве (длина) и двумя событиями во времени (промежуток), которые также имеют в классической механике абсолютный характер. Итак, время и пространство в классической механике независимы друг от друга и вообще от любых свойств материальных объектов.

В середине XIX века были проведены опыты по измерению скорости света с (с ≈ 3.108 м/с). Сразу стал вопрос: скорость света по отношению к чему? Большинство физиков предположили, что к эфиру, который неподвижен и является прообразом абсолютного пространства. Найдя разность между скоростью света в эфире и скоростью света в данной системе отсчета, можно было бы определить скорость движения этой системы относительно эфира. Эта идея легла в основу опыта Майкельсона—Морли. Однако опыт дал отрицательный результат.

Принципиально новый подход к пониманию пространства и времени был предложен Эйнштейном, который создал специальную теорию относительности (СТО) и общую теорию относительности (ОТО).

Основу СТО составили два постулата:

• принцип относительности Эйнштейна, обобщающий принцип относительности Галилея на любые физические явления: все физические процессы (при одних и тех же условиях) в инерциальных системах отсчета протекают одинаково; все инерциальные системы отсчета равноправны, а физические законы инвариантны по отношению к выбору инерциальной системы отсчета;

• принцип постоянства скорости света: скорость света в вакууме постоянна и не зависит от движения источника и приемника света.

Данные постулаты противоречили представлениям о пространстве и времени, принятым в механике Ньютона. Эйнштейн предположил, что время в разных системах отсчета течет по-разному, а это значит, что промежуток времени между двумя какими-либо событиями относителен и будет зависеть от выбора системы отсчета. События, одновременные в одной инерциальной системе отсчета, будут не одновременными в других системах.

Линейные размеры тела также зависят от скорости движения. Время и пространство в СТО оказались взаимосвязанными, образуя четырехмерный пространственно-временной континуум.

Математическая интерпретация СТО нашла выражение в преобразованиях Лоренца. Эти уравнения позволяют выразить координаты в движущейся системе К' через координаты неподвижной К и наоборот.

Как видно из формул, пространство и время в них входят равноправным образом, а длина и временной промежуток имеют относительный характер. Предмет обладает наибольшей длиной в системе, где он покоится. Длина, измеренная в движущейся системе отсчета, сокращается в раз. Этот эффект называют релятивистским сокращением длины. Промежуток времени будет наименьшим в покоящейся системе, а в движущейся системе он возрастает в раз. Данный эффект обозначается как релятивистское замедление течения времени.

Таким образом, в СТО длина и промежуток времени утрачивают свой абсолютный характер. Но одновременно с этим возникает вопрос о природе релятивистских эффектов. Их объяснение было представлено в разных концепциях: динамической (предложенной Лоренцем и Фицджеральдом), согласно которой тела при движении действительно сокращаются, что вызвано динамическими причинами, силовыми воздействиями на них; субъективистской, признающей зависимость длины и временного промежутка от субъекта наблюдения, и, наконец, релятивистской. Суть последней концепции состоит в том, что она исходит из признания релятивистских эффектов как реальных, но относительных эффектов. Длина не есть характеристика тела самого по себе, а выражает отношение тела к определенной системе отсчета и имеет смысл лишь в связи с ней. Аналогично дело обстоит и с временным промежутком. Данная зависимость становится заметной лишь при скоростях, сопоставимых со скоростью света.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

В СТО исчезли прежние абсолютные величины классической физики (длина и временной промежуток); они стали относительными. Зато появились новые абсолюты: скорость света и единый пространственно-временной континуум.

• Из СТО вытекает ряд следствий:

• закон сложения скоростей: при сложении скоростей никогда не может получиться скорость больше скорости света;

• зависимость массы тела от скорости его движения;

• взаимосвязь массы и энергии, выраженная в формуле E = mc2.

В 1916 году была опубликована общая теория относительности Эйнштейна (ОТО) или теория тяготения. Эйнштейн обобщил СТО на ускоренные системы, ограничил применимость постоянства скорости света областями, где гравитационными силами можно пренебречь, расширил принцип относительности, распространяя его на неинерциальные системы. В ОТО он исходил из эквивалентности гравитационных и инерционных масс, или эквивалентности инерционных и гравитационных полей. Принцип эквивалентности носит локальный характер и справедлив лишь в бесконечно малых областях пространства-времени. Однако это не помешало Эйнштейну сформулировать общий принцип относительности, утверждающий ковариантность законов природы в любых системах отсчета.

Все это потребовало иной, более общей формулировки законов физики, а также изменения представлений о геометрии пространства.

Долгое время в науке господствующей выступала геометрия, чьи постулаты были сформулированы Евклидом. Он выдвинул аксиомы геометрии для пространства с нулевой кривизной, в которой сумма углов треугольника равна 180°. Евклидова геометрия реализуется на плоскости.

Однако затем были предложены другие геометрии. Так, Б. Риман представил пространство с положительной кривизной (сумма углов треугольника больше 180°) в виде сферы.

Н. Лобачевский и Я. Бойаи представили геометрию с отрицательной кривизной (сумма углов треугольника меньше 180°) в виде псевдосферы.

Лобачевский и Риман считали, что разрешить вопрос о том, какова действительная геометрия нашего мира, могут лишь физические эксперименты. Эйнштейн в ОТО придал физический смысл неевклидовой геометрии. Под действием гравитационных полей метрика пространства становится неевклидовой. Эйнштейн подтвердил идеи римановой геометрии. Он связал геометрию и тяготение воедино. Метрические характеристики реального мира зависят от гравитационных полей. Луч света, обладающий энергией, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения (впоследствии данный теоретический вывод Эйнштейна нашел экспериментальное подтверждение). Искривление светового луча в поле тяготения свидетельствует, что скорость света в таком поле не может быть постоянной.

Вокруг общей теории относительности до сих пор не затихают споры. Сторонники этой теории в качестве решающих доказательств ее справедливости выдвигают экспериментальное подтверждение важнейших следствий общей теории относительности. Так, биографы Эйнштейна считают самым сильным эмоциональным событием за всю научную жизнь Эйнштейна, а может быть, и за всю его жизнь объяснение искажения орбиты Меркурия с помощью общей теории относительности.

Другим важным следствием общей теории относительности является следующее предсказание: лучи света, проходящие вблизи Солнца, обязаны искривляться. Опыты, проведенные во время солнечных затмений в 1919 и 1922 годах, показали полное совпадение с выводами общей теории относительности.

Эффекты общей теории относительности в Солнечной системе малы из-за относительно слабого гравитационного поля Солнца, что ограничивает рамки возможных экспериментов. Общая теория относительности получила, таким образом, экспериментальное подтверждение лишь для слабого гравитационного поля, на что и указывают скептики.

Итак, согласно ОТО, все системы отсчета являются равноценными для описания законов природы, а пространственно-временные свойства окружающего мира зависят от расположения и движения тяготеющих масс. Эйнштейн показал, что движение в поле тяготения вызывается не действием особых гравитационных сил, приложенных к движущимся телам, а представляет движение по инерции, но в неевклидовом пространстве. В ОТО не только пространство и время по отдельности, но и пространственно-временной континуум лишаются абсолютности.

В дополнение к реляционной концепции сформулируем основные свойства пространства и времени:

• пространство и время объективны, т.е. существуют независимо от сознания людей и их познания, они связаны с материей как формы координации материальных объектов;

• они являются универсальными, всеобщими формами бытия материи, отсюда ничто не может существовать вне времени и пространства;

• пространство трехмерно, т.е. положение любого объекта может быть определено с помощью трех независимых величин (координат); в прямоугольной декартовой системе координат — это X, Y, Z (длина, ширина и высота), в сферической системе координат — это будут радиус-вектор r и углы ϕ и θ, в цилиндрической системе — высота Z, радиус-вектор r и угол ϕ; наряду с трехмерным пространством в науке используется и понятие многомерного (n-мерного) пространства; реальное пространство трехмерно, а понятие n-мерного пространства — пример математического обобщения, математической абстракции;

• необратимость времени и его одномерность. Одномерность времени означает, что для фиксации положения объекта во времени достаточно одной величины— промежутка времени t, протекшего от начала отсчета (t = 0). Время необратимо течет от прошлого через настоящее в будущее. В нашей литературе наиболее распространена точка зрения, согласно которой необратимость времени выводится из причинности, так как причина всегда предшествует следствию. Хотя некоторые авторы не согласны с такой трактовкой, утверждая, что речь должна идти не о дедукции одной категории из другой, а о том, находит ли необратимость времени выражение в фундаментальных естественнонаучных законах; так, в макроскопических процессах данная необратимость находит свое выражение в законе возрастания энтропии (для микромира также характерна физическая неэквивалентность двух направлений времени, связанная с процессом взаимодействия квантового объекта с классическим объектом);

• однородность времени, а также однородность и изотропность пространства; однородность пространства означает равноправие всех его точек; изотропность — равноправие всех возможных направлений; однородность времени проявляется в равноправии всех его моментов. Перечисленные свойства связаны с фундаментальными законами физики — законами сохранения: симметрия относительно сдвига времени (т.е. однородность времени) соответствует закону сохранения энергии; симметрия относительно пространственного сдвига (т.е. однородности пространства) — закону сохранения импульса; симметрии относительно поворота координатных осей (т.е. изотропности пространства) — закону сохранения момента импульса (углового момента). Данные свойства пространства и времени лежат и в основе галилеевского принципа относительности и в основе специальной теории относительности.

В современной науке используются понятия биологического, психологического и социального пространства и времени (например, особенности пространственно-временных параметров органического мира характеризуют биологическое пространство и время, психологическое связано с особенностями психологического восприятия пространства и времени, а социальное описывает особенности временного разворачивания социальных явлений и процессов).

Положения натурфилософии использовались и в конце XIX - начале XX века В. Оствальдом, Х. Дришем, Т. Липпсом для преодоления кризиса, возникшего в новейшем естествознании. Элементы натурфилософии имели место в теории эмерджентной эволюции, «критической онтологии» Н. Гартмана и др.

И вместе с тем, в связи с интенсивным развитием естественных наук, накоплением естественнонаучных знаний натурфилософский период можно считать преодоленным. Еще в эпоху Возрождения с появлением экспериментального естествознания была показана несостоятельность натурфилософских представлений. «Новые взгляды на окружающий мир стали основываться на результатах и выводах естествознания соответствующей эпохи и стали поэтому называться естественнонаучной картиной мира».

Второй этап - механистическая картина мира. Первой естественнонаучной картиной мира, которая базировалась уже на данных собственно научного знания, являлась механистическая, построенная на абсолютизации механической формы движения материи. Ее формирование связывается с именем Г.Галилея, установившего законы движения свободно падающих тел и сформулировавшего принцип относительности в механике. Он же впервые применил и экспериментальный метод в исследовании природы, а также использовал математическую обработку полученных результатов в эксперименте. Если натурфилософия исходила из умозрительного объяснения природы, то теперь утверждалась идея, что всякая гипотеза должна проверяться на опыте.

Большую роль в становлении механистической картины мира сыграли открытые И. Кеплером законы движения планет. Тем самым было доказано, что между миром земным и небесным не существует абсолютного противопоставления, а законы движения небесных тел в принципе не отличаются от законов движения тел земных.

Концептуальную разработку механистической картины мира предпринял И. Ньютон, заложивший основы классической механики. Он сформулировал основные законы динамики и закон всемирного тяготения, ввел количественный подход к описанию движения. В центре его научных интересов было механическое движение, т.е. перемещение тела по отношению к другим телам. Ньютон предполагал, что движение, как и время, пространство — абсолютны, а последние существуют независимо друг от друга; более того, само время обратимо. Согласно данной картине мира, все механические процессы строго детерминированы, а это значит, что возможно точно и однозначно определить состояние механической системы в любой период времени. Случайность как таковая исключалась из этих процессов, при этом утверждалась идея, что все в мире предопределено предшествующими его состояниями (такая позиция нашла четкое выражение у П.С. Лапласа). Весь мир, с позиции такого подхода, предстает как огромный механизм, заведенный Богом, но затем развивающийся по своим законам. Отсюда все виды движения в природе свелись к одному - механическому.

Механическое движение в физике Ньютона связывалось с принципом дальнодействия, согласно которому действия и сигналы могут передаваться в пустом пространстве с любой скоростью.

Уже в XVIII веке механистическая картина мира неоднократно критиковалась многими философами и учеными, но лишь открытие новых физических явлений заставило исследователей дополнить данную картину мира электромагнитной.

Третий этап - электромагнитная картина мира. Датский физик Г.Х. Эрстед впервые обнаружил связь между электрическим и магнитным полями. В дальнейшем электромагнитная теория была развита в трудах М. Фарадея, Дж. Максвелла. Было обосновано, что наряду с веществом существует и такая форма материи, как поле, причем физические поля могут иметь разную природу: например, гравитационное (известное со времени Ньютона), электромагнитное. Максвеллом была высказана догадка о существовании поперечных электромагнитных волн, могущих распространяться в пустоте со скоростью, не зависящей от длины волны, что позволило ему выдвинуть идею постоянства скорости света в вакууме. Поскольку электромагнитные волны, как было доказано, распространяются с конечной скоростью, постольку электромагнитное взаимодействие между электрическими зарядами не может происходить мгновенно, согласно принципу дальнодействия. Поэтому был введен принцип близкодействия, по которому один из зарядов создает электромагнитное поле, распространяющееся с конечной скоростью и достигающее второго заряда, воздействует на него. Следовательно, взаимодействие между зарядами немыслимо без участия промежуточного звена — электромагнитного поля. Носителем электромагнитного поля считался неподвижный эфир, а система отсчета, связанная с ним, рассматривалась как особая, абсолютная.

В конце XIX — начале XX века в физике, да и других естественных науках, были сделаны открытия, коренным образом изменившие прежнюю естественнонаучную картину мира.

Четвертый этап— квантово-релятивистская картина мира. Ее формирование связано, прежде всего, с изучением явлений и процессов в микромире.

Первые экспериментальные результаты, из которых можно было сделать вывод о сложной структуре атомов, были получены М. Фарадеем. Затем Дж. Томсон зафиксировал отрицательно заряженные частицы — электроны. Все это привело к пересмотру положения о неделимости атомов и установлению их сложной структуры. Планетарная модель атома была предложена Э. Резерфордом, однако в своем первоначальном виде она имела ряд недостатков, в частности – неустойчивостью, и затем была усовершенствована Н. Бором. Свои представления об особых свойствах атомов Бор изложил в виде следующих постулатов:

• атомная система может находиться только в особых стационарных состояниях (квантовых состояниях) n, каждому из которых соответствует определенная энергия Еn; в стационарном состоянии атом не излучает;

• при переходе атома из одного стационарного состояния (n1) в другое (n2) испускается или поглощается квант электромагнитного излучения.

Все это в конечном итоге отразилось в новом понимании энергии тел: если раньше предполагалось, что энергия излучается непрерывно, то теперь утверждалось, что она может испускаться отдельными квантами.

В 30-е годы XX века в физику вошла идея корпускулярно-волнового дуализма, согласно которой элементарные частицы обладают не только корпускулярными (свойствами вещества), но и волновыми свойствами. Данное положение привело к пересмотру идеи принципиального различия между веществом и полем и утверждению, что на уровне микромира частицы выступают и как корпускулы, и как волны.

Для изучения явлений микромира в конце 20-х годов XX века создается особое направление в физике - квантовая механика, а впоследствии возникли квантовая электродинамика, теория элементарных частиц и др. В квантовой физике было сделано множество открытий: установлен состав атомного ядра, обнаружено наличие сильных и слабых взаимодействий, изучено явление радиоактивности, сформулированы параметры и свойства элементарных частиц, раскрыты феномены античастицы, резонанса, предложена гипотеза кварков и многое другое.

Помимо физики микромира современную естественнонаучную картину мира обосновывает и теория относительности, в корне изменившая представления о пространстве и времени. Если в классической механике пространство и время выступают как абсолютные, не зависящие друг от друга феномены, то в специальной теории относительности длина и временной промежуток становятся относительными. Одновременно появляются новые абсолютные величины — скорость света и пространственно-временной континуум. Все движение, согласно данной теории, имеет относительный характер, а в природе не существует абсолютной системы отсчета.

Еще более радикальные изменения в учении о пространстве и времени связаны с созданием общей теории относительности. В ней не только пространство и время по отдельности, но и пространственно-временной континуум лишаются абсолютности: последний связывается с гравитацией. Гравитация не существует вне метрики пространства и времени, она воздействует на нее. Поэтому гравитационное поле может быть охарактеризовано как отступление пространственно-временной метрики от евклидовой («искривление» пространственно-временного континуума под действием сил гравитации) и, наоборот, метрика пространства-времени может быть представлена как проявление гравитации.

Современную естественнонаучную картину мира нельзя рассматривать вне идей космологии, базирующейся на положениях астрофизики, релятивистской термодинамики и пр. Обнаружение «разбегания» галактик, открытие нестационарности Вселенной привели к созданию таких ее моделей, которые основываются на постулатах нестационарности, изотропности, однородности.

И, наконец, огромную роль в нынешней естественнонаучной картине мира играют химия и биология. Открытие новых химических элементов, описание их свойств, формулировка периодического закона, исследование химических процессов и т.д. - таков вклад химии в развитие современных представлений о природе. Обнаружение клеточного строения живых тел, изучение молекулярно-генетического уровня биологических структур, а также онтогенетического уровня живых систем, выдвижение эволюционных идей в развитии природы сильно повлияли на утверждение таких принципов современной естественнонаучной картины мира, как системность, глобальный эволюционизм, самоорганизация, историчность.

Системность означает воспроизведение наукой того факта, что мир предстает как наиболее крупная из известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.

Глобальный эволюционизм - это признание невозможности существования мира вне развития, эволюции.

Самоорганизация - наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе ее эволюции.

И, наконец, еще один принцип - признание историчности, т.е. принципиальной незавершенности настоящей, да и любой другой научной картины мира.

В данном случае были перечислены лишь важнейшие достижения ряда естественных наук. Вместе с тем нельзя не отметить, что помимо названных наук и другие вносят существенный вклад в становление современной естественнонаучной картины мира (геология, география и др.).

Приведем хронологию наиболее важных событий, в соответствии с современной естественнонаучной картиной мира:

• 20 миллиардов лет назад — Большой взрыв.

• Несколько минут спустя — образование вещественной основы Вселенной (фотоны, нейтрино и антинейтрино с примесью ядер водорода, гелия).

• Через несколько сотен тысяч лет — появление атомов (легких элементов).

• 19 — 17 миллиардов лет назад — образование разномасштабных структур (галактик).

• 15 миллиардов лет назад — появление звезд первого поколения, образование атомов тяжелых элементов.

• 5 миллиардов лет назад — рождение Солнца.

• 4,6 миллиардов лет назад — образование Земли.

• 3,8 миллиардов лет назад — зарождение жизни.

• 450 миллионов лет назад — появление растений.

• 150 миллионов лет назад — появление млекопитающих.

• 2 миллиона лет назад — начало антропогенеза.

Предваряя обзор концепций естествознания, базирующихся на научных достижениях XX века, выделим общие закономерности развития природы. Это —

• наличие эволюционных процессов (от кварков до Вселенной);

• самоорганизация (от неживых систем до биосферы);

• системность связи неживой и живой природы;

• адекватность природных систем пространству и времени.

Поделись с друзьями
Добавить в избранное (необходима авторизация)