Нужна помощь в написании работы?

Внутри герметичного корпуса две реакционные камеры со специальными ваннами. (см. схему). В ванны загружается металлический лом. Электрическая дуга зажигается между этими ваннами и металл в них плавится. Отходы подаются на поверхность расплавленного металла. Плазмохимическая реакция газификации протекает в камерах реактора при температуре 1300оС. Продукты газификации выводятся из камер плазмохимического реактора и поступают в систему газоочистки. Во время работы на поверхности металла образуется слой расплавленного шлака. Шлак удаляется по мере накопления или непрерывно. По сравнению с плазмохимическими реакторами использующими традиционные плазмотроны, новый реактор обладает рядом стратегических преимуществ:
Плазмохимический метод
Плазма, как известно, представляет собой газ, молекулы которого ионизированы. Она состоит из многих компонентов: электронов различных энергий, положительных и отрицательных ионов, нейтральных частиц. К нейтральным частицам относятся как молекулы и атомы в основном состоянии, так и молекулы, атомы, радикалы в возбужденном состоянии.
Процесс конверсии вредных веществ происходит по следующему механизму: загрязненный воздух проходит через газоразрядный реактор, в котором происходит разрушение вредных веществ под действием низкотемпературной плазмы и других физико-химических факторов воздействия. В результате этих воздействий также происходит возбуждение молекул, атомов и радикалов, что качественно влияет на работу каталитической ступени очистки.

Плазмохимические процессы

Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной плазме, при температуре от 1000 до 10 000° С. Такие процессы характеризуются возбужденным состоянием ионизированных и неионизированных частиц, столкновения которых приводят к очень высокой скорости химических реакций.

Тест на знание английского языка Проверь свой уровень за 10 минут, и получи бесплатные рекомендации по 4 пунктам:

  • Аудирование
  • Грамматика
  • Речь
  • Письмо

Проверить

296

В плазмохимических процессах скорость перераспределения химических связей между реагирующими частицами очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Такая скорость в обычных заводских реакторах из-за обратимости снижается в тысячи и миллионы раз, поэтому плазмохимические процессы высокопроизводительны.

Производительность метанового плазмохимического реактора — плазмотрона крохотных размеров (длиной 65 см и диаметром 15 см) — составляет 75 т ацетилена в сутки. По производительности такой плазмотрон не уступает огромному заводу. В реакторе при температуре 3000—3500° С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен. Степень использования энергии достигает 90— 95%, а энергозатраты составляют не более 3 кВт • ч на 1 кг ацетилена. В то же время в паровом реакторе пиролиза метана энергозатраты вдвое больше.

В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков — основного сырья для бурно развивающейся порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах — 1—2 кВт. ч на 1кг готовой продукции. Плазмохимические способы промышленного производства многих видов химической продукции отличаются высокой производительностью при сравнительно небольших затратах энергии.

В 70-х годах XX в. созданы плазмохимические сталеплавильные печи, производящие высококачественный металл. Именно таким печам принадлежит будущее электрометаллургии. В результате ионно-плазменной обработки можно сформировать, например, пористый рельеф на ровной поверхности (см. рис. 6.10). Ионно-плазменная обработка рабочей поверхности инструментов позволяет увеличить их износостойкость в несколько раз. В результате подобной обработки можно сформировать, например, пористый Рельеф на ровной поверхности (см. рис. 6.10). Ионно-плазменное напыление в вакууме широко применяется для формирования элементов микронных размеров современных интегральных схем микроэлектроники.

Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, которая способствует срастанию эндопротеза с костной тканью. Такие покрытия обладают большой удельной поверхностью. С их помощью можно увеличить эффективность катализатора для дожигания выхлопных газов автомобиля. Пористые покрытия, нанесенные на поверхность теплообменников, увеличивают коэффициент теплоотдачи, а пористые керамические покрытия служат надежной защитой от тепло потерь.

Плазмохимия позволяет синтезировать такие ранее неизвестные материалы, как металлобетон, в котором в качестве связующих материалов используются сталь, чугун, алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие в 10 раз и на растяжение в 100 раз.

В нашей стране разработан плазмохимический способ превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. Кроме основного химического продукта — синтез-газа, извлекаемого из органических соединений каменного или бурого угля, данный способ позволяет получить из его неорганических включений ценные соединения:технический кремний, карбосолилиций, ферросилиций, адсорбенты для очистки воды и т. п., — которые при других способах переработки угля выбрасываются в виде зольных отходов.

Таким образом, плазмохимические технологии, внедрившись в химическую промышленность сравнительно недавно, охватывают все больший круг различных отраслей современной промышленности.

Плазмохимия изучает процессы в низкотемпературной плазме. Плазма - это ионизированный газ. Различают слабоионизированную, или низкотемпературную, и высокотемпературную плазму. В плазме-химии рассматриваются процессы при температурах от 1000 до 10000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновениями молекул с заряженными частицами и, что особенно важно, очень высокими скоростями реакций.

В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Такая скорость в обычных заводских реакторах из-за обратимости снижается в тысячи и миллионы раз. Плазмохимические процессы поэтому очень высокопроизводительны.

Метановьй плазмотрон с производительностью 75 т ацетилена в сутки имеет сравнительно крохотные размеры: длину 65 см и диаметр 15 см. Такой плазмотрон заменяет целый огромный завод. При температуре 3000- 3500°С за одну десятитысячную долю секунды 80% метана превращается в ацетилен. Степень использования энергии достигает 90- 95%, а энергозатраты составляют не более 3 кВт*ч на 1 кг ацетилена. В паровом реакторе пиролиза метана энергозатраты вдвое больше.

В последнее время разработаны способы связывания атмосферного азота посредством плазмохимического синтеза оксида азота, которые гораздо экономичнее аммиачного метода. Создается плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии. Разработаны методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден при энергозатратах не более 1-2 кВт*ч на килограмм. Таким образом химия высоких энергий направлена на существенную экономию энергии.

Относительно недавно - в 1970-х годах - созданы плазменные сталеплавильные печи, выдающие высококачественный металл. Именно таким печам принадлежит будущее. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать такие ранее Неизвестные материалы, как металлобетон, в котором в качестве связывающего используется сталь, чугун, алюминий. При сплавлении частиц горной породы благодаря прочному сжатию их с металлом образуется металлобетон, превосходящий по прочности обычный бетон на сжатие в 10 раз и на растяжение в 100 раз.

В нашей стране разработаны плазмохимические способы превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. При такой технологии, кроме синтез-газа, из неорганических включений каменного или бурого угля одновременно получаются и другие вещества: технический кремний, карбосилиций, ферросилиций, адсорбенты для очистки воды и т.п.

Поделись с друзьями