Нужна помощь в написании работы?

Гидравлическим ударом называется колебательный процесс, возникающий в трубопроводе при внезапном изменении скорости жидкости, например при остановке потока из-за быстрого перекрытия задвижки (крана).

Этот процесс очень быстротечен и характеризуется чередованием резкого повышения и понижения давления, что может привести к разрушению гидросистемы. Это вызвано тем, что кинетическая энергия движущегося потока при остановке переходит в работу по растяжению стенок труб и сжатию жидкости. Наибольшую опасность представляет начальный скачок давления.

Проследим стадии гидравлического удара, возникающего в трубопроводе при быстром перекрытии потока (рисунок 7.5).

Пусть в конце трубы, по которой жидкость движется со скоростью vq, произведено мгновенное закрытие крана А. Тогда (см. рисунок 7.5, а) скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается. Давление в остановившейся жидкости возрастает на Δpуд. На заторможенные частицы жидкости у крана набегают другие частицы и тоже теряют скорость, в результате чего сечение п—п перемещается вправо со скоростью с, называемой скоростью ударной волны, сама же переходная область (сечение п—п), в которой давление изменяется на величину Δpуд, называется ударной волной.

Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δpуд распространится на всю трубу (см. рис. 7.5, б).

Но такое состояние не является равновесным. Под действием повышенного давления (р0 + Δpуд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану — с той же скоростью с, оставляя за собой в жидкости давление p0 (см. рисунке 7.5, в).

Рисунок 7.5 - Стадии гидравлического удара в трубопроводе

Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению p0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость , но направленную в противоположную сторону.

С этой скоростью «жидкая колонна» (см. рисунок 7.5, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δpуд). Граница между двумя состояниями жидкости направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость (см. рисунок 7.5, д). Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком.

Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару показано на рисунке 7.5, е. Так же как и для случая, изображенного на рисунке 7.5, б, оно не является равновесным, так как жидкость в трубе находится под давлением (р0 + Δpуд), меньшим, чем в резервуаре. На рисунке 7.5, ж показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью .

Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским. В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δpуд. В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δpуд. Одна из этих формул, получившая имя Н.Е.Жуковского, имеет вид

,                                                  (7.14)

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

где скорость распространения ударной волны с определяется по формуле

,

где К — объемный модуль упругости жидкости; Е — модуль упругости материала стенки трубопровода; d и δ — соответственно внутренний диаметр и толщина стенки трубопровода.

Формула (7.14) справедлива при прямом гидравлическом ударе, когда время перекрытия потока tзакр меньше фазы гидравлического удара t0:

,

где l — длина трубы.

Фаза гидравлического удара t0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно. При tзакр > t0 ударное давление получается меньше, и такой гидроудар называют непрямым.

При необходимости можно использовать известные способы «смягчения» гидравлического удара. Наиболее эффективным из них является увеличение времени срабатывания кранов или других устройств, перекрывающих поток жидкости. Аналогичный эффект достигается установкой перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов. Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе и уменьшение длины трубопроводов (уменьшение фазы гидравлического удара) также способствуют снижению ударного давления.


Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями