Главная идея этой системы, как уже отмечалось выше, заключается в том, чтобы каждая политическая партия получала в парламенте или ином представительном органе число мандатов, пропорциональное числу поданных за нее голосов избирателей. В принципе это справедливо, но, как говорится, недостатки суть продолжение достоинств. Пропорциональная избирательная система гарантирует представительство даже для относительно мелких партий, что при парламентарной или смешанной форме правления создает сложные проблемы при формировании правительства и в дальнейшем, в ходе его деятельности. Разумеется, проблемы возникают в случае, когда ни одна партия или устойчивая коалиция партий не имеет в парламенте прочного абсолютного большинства, а такой ситуации пропорциональная система благоприятствует. Это один (но не единственный) ее существенный дефект.
В условиях, когда закон не гарантирует демократического внутреннего устройства политических партий, пропорциональная избирательная система играет наруку узкой партийной верхушке и приводит к отчуждению от политики рядовых партийцев и партийного электората*. Так обстоит дело, в частности, в Италии, где массы избирателей решительно высказались на апрельском референдуме 1993 года против пропорциональной системы.
Дело в том, что пропорциональная система может применяться только в многомандатных избирательных округах, причем чем крупнее округ, тем большая степень пропорциональности может быть достигнута. Наилучший результат достигается, если вся страна представляет собой единый избирательный округ, в котором избирается весь состав парламента.
Чтобы смягчить дефекты системы, во многих странах прибегают к различного рода корректировкам.
Для пропорционального распределения мандатов наиболее часто используются метод избирательной квоты и метод делителей.
Избирательная квота (избирательный метр, избирательное частное) – это наименьшее число голосов, необходимое для избрания одного кандидата. Определяется она различно.
Правило наибольшего остатка требует передать нераспределенные мандаты партиям, у которых остаток голосов самый большой.
Замечено, что правило наибольшего остатка (особенно при использовании квоты Хэра) в некоторой мере благоприятствует небольшим партиям, «подбирающим» оставшиеся после первого распределения мандаты.
Большим партиям благоприятствует правило наибольшей средней, которое предусматривает передачу нераспределенных мандатов партиям, имеющим наибольшее частное от деления числа собранных ими голосов на число полученных при первом распределении мандатов плюс единицу. Это правило было предложено в 1792 году одним из «отцов-основателей» США и будущим Президентом этой страны Томасом Джефферсоном (1743 – 1826).
Мы видим, что если замкнуть распределение мандатов рамками отдельного избирательного округа, то в нем какая-то часть голосов пропадет, а если пропавшие голоса суммировать по всей стране, то их доля может стать заметной. Поэтому в ряде стран второе распределение производится либо по еще более крупным избирательным единицам, где объединяются остатки голосов и нераспределенные мандаты входящих в эти единицы избирательных округов, либо даже по стране в целом, как это было в Италии до избирательной реформы 1993 года.
Метод делителей позволяет сразу распределить все мандаты в избирательном округе или по стране в целом. Он заключается в последовательном делении числа голосов, полученных каждым списком кандидатов, на определенную серию делителей. Все получаемые таким образом частные располагаются по убывающей, и депутатские мандаты приходятся на наибольшие из них. Наименьшее из таких частных представляет собой по существу ту же избирательную квоту.
Делители эти различны. Так, в 1882 году профессор Гентского университета (Бельгия) Виктор д'Ондт (d'Hondt) предложил делить просто на последовательный ряд целых чисел, начиная с единицы: на 1, 2, 3, 4 и т. д. Этот метод заметно благоприятствует крупным партиям и принят в ряде стран (например, в некоторых землях Германии, в Аргентине, Бельгии, Болгарии, Польше). Иногда этот метод устанавливается конституционно. Например, ч. 1 ст. 155 Конституции Португальской Республики 1976 года устанавливает, что депутаты Собрания Республики избираются по системе пропорционального представительства и на основе метода наибольшей средней д'Ондта.
Итальянский исследователь Империалли предложил делить на такой же ряд чисел, но начиная с двойки; в сущности это вариант метода д'Ондта. Французский ученый А. Сент-Лагюе выдвинул в 1910 году идею делить на нечетные числа: 1, 3, 5, 7 и т. д. Эта идея реализована, например, в Латвии. В ряде стран (например, в Болгарии при выборах в Великое народное собрание) применяется умеренный, или модифицированный, метод Сент-Лагюе, при котором первый делитель – 1,4, а последующие – 3, 5, 7 и дальнейшие нечетные целые числа. Поскольку этот метод используется, в частности, в Швеции, Норвегии и Дании, его иногда называют скандинавским. При так называемом датском методе каждый последующий делитель больше предыдущего на три единицы: 1, 4, 7, 10 и т. д. После проведенного деления мандаты передаются тем партиям, у которых полученные частные оказались больше.
Поможем написать любую работу на аналогичную тему