Нужна помощь в написании работы?

Согласно планетарной модели строения атома в центре атома находится ядро, содержащее протоны и нейтроны и сосредоточивающее, таким образом, фактически всю массу. Число протонов определяет вид атома а также его порядковый номер в периодической системе элементов Д.И. Менделеева (при записи элемента число протонов указывается перед буквенным символом элемента внизу).

Вокруг положительно заряженного ядра вращаются отрицательно заряженные электроны. Число электронов атома равно числу протонов в ядре, так что в целом атом электронейтрален.

Согласно такой Резерфордовской модели атома электрон, вращаясь вокруг ядра, должен излучать энергию и, с каждым оборотом теряя её, упасть на ядро. Это излучение должно быть непрерывным, т.е. спектр излучения атома должен быть сплошным. Представление о такого рода (сплошном) спектре может дать разложение солнечного света призмой на плавно переходящие друг в друга цвета радуги.

Однако уже в конце Х1Х века было экспериментально доказано, что спектры излучения атомов (в газообразном состоянии) не сплошные, а состоят из ряда чётко фиксированных полос ("полосатый" спектр).

Кроме того, данная простейшая модель не могла объяснить устойчивости (долгоживучести) атома: электрон, теряя энергию в форме электромагнитного излучения, должен был упасть на ядро (согласно простейшим расчётам в течении 10 секунд).

Эти два  основных  противоречия   модели  Резерфорда  были устранены постулатами Бора (1913 год), согласно которым допускалось что:

1. В атоме имеются орбитали, находясь на которых, электрон не излучает и не поглощает энергию (так называемые стационарные орбиты).

2. Поглощение или выделение энергии происходит только как следствие перехода электронов с одной стационарной орбиты на другую стационарную. Поглощение - при переходе с ближайшей к ядру орбиты на более отдалённую; излучение – наоборот, при переходе с отдаленной на ближайшую.

Приравнивая математические выражения для центростремительной силы вращающегося вокруг ядра электрона силе электростатического притяжения электрона к ядру, и, учитывая уже известные положении квантовой механики о том, что энергия излучается не непрерывно, а определенными порциями (квантами), Бор рассчитал для простейшего атома (водорода) радиусы дозволенных такой теорией (стационарных) орбит и величины энергий электрона на каждой из таких электронных орбит (слоев). Радиус ближайшей к ядру стационарной орбиты водорода, согласно расчёта, оказался равным 0,053 нм, т.е. R = 0,053.10-9 м.

Стационарные орбиты расположены вокруг ядра слоями. Для обозначения номера слоя, в котором находится данный электрон, введено первое или главное квантовое число.

Общее буквенное обозначение главного квантового числа - n. Условно принято обозначать стационарные орбиты порядковыми числами от 1 до бесконечности. Таким образом, главное квантовое число обозначает номер электронного слоя, в котором находится интересующий нас электрон.

n = 1, 2, 3, ... ∞.

Для обозначения главного квантового числа используют заглавные латинские буквы: K, L, M, N, O, P, Q.

Если мы говорим, что для данного электрона главное квантовое число равно единице (n = 1), то с физической точки зрения это равносильно утверждению: данный, электрон находится в первом (наиболее близком к ядру) электронном слое.

Естественно, чем дальше тот или иной электронный слой от ядра (больше значение n), тем больше размер (радиус) этого слоя.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Радиусы стационарных орбит атомов оказались пропорциональны квадрату главного квантового числа (номера слоя):

R = An2

Принимая во внимание, что электроны в столь маленьком пространстве движутся с огромной линейной скоростью (около 260 тыс. км/с), близкой к скорости света (300 тыс. км/с), электронный слой можно представить себе в форме электронного облака, то есть размытого электроотрицательного поля.

Согласно постулатам Н. Бора электрон, вращаясь по стационарным орбитам, не излучает и не поглощает энергии и только переход его с одной орбиты на другую вызывает изменение его энергии, т.е. излучение или поглощение. Переход из отдалённого слоя в более близкий к ядру слой вызывает излучение энергии, напротив, получив энергию из вне (поглотив), электрон приобретает возможность перескочить на более удалённый уровень.

Поделись с друзьями