Нужна помощь в написании работы?

     Зрительный анализатор. По данным некоторых ученых 70% всех сведений человек получает из окружающего мира с помощью зрения, другие полагают, что цифра должна быть увеличена до 90%.        Основная функция зрения состоит в различении яркости, цвета, формы, размеров наблюдаемых объектов. Наряду с другими анализаторами зрение играет большую роль в регуляции положения тела и в определении расстояния до объекта.

     Строение глаза и движения глазных яблок. Глазное яблоко располагается в глазничной впадине лицевой части черепа. Форму глазного яблока определяет наружная белочная оболочка глаза - склера, переходящая спереди в роговицу. За роговицей располагается хрусталик, к которому прилегает радужка. Пространство между хрусталиком и роговицей заполнено жидкостью. Это пространство называют передней камерой глаза. Глазное яблоко заполнено стекловидным телом - прозрачной массой студенистой консистенции.

          Расположение отдельных частей глаза почти всегда неизменно. Такая устойчивость поддерживается как жесткой склерой, так и постоянным уровнем внутриглазного давления. Водянистая влага передней камеры глаза образуется благодаря процессу фильтрации из кровеносных капилляров цилиарного тела. Внутриглазное давление сохраняется постоянным, если количество выводимой через шлемов канал жидкости точно соответствует количеству жидкости, образующейся в цилиарном теле. Если же отток затруднен, то повышается внутриглазное давление, и возникает глаукома. Под склерой находится  сосудистая оболочка и кровеносные сосуды, которые питают сетчатку. Сосудистая оболочка переходит в ресничное или цилиарное тело, в котором находятся гладкие мышечные волокна, образующие ресничную мышцу. Самый передней отдел сосудистой оболочки образует радужную, регулирующую размер зрачка. В радужной оболочке имеются два рода мышц: кольцевые и радиальные. Наружный слой сетчатки, примыкающий к сосудистому слою, образован пигментными клетками. Внутренняя оболочка глазного яблока – сетчатка. Она состоит из фоторецептивных клеток: колбочек и палочек. В месте пересечения сетчатки с оптической осью глаза располагается область наилучшего видения - желтое пятно, образованное громадным числом колбочек. Участок сетчатки, где сходятся отростки чувствительных нейронов, образующих зрительный нерв, лишен колбочек и палочек. Это место называют слепым пятном. Движение глазных яблок всегда осуществляется содружественно. При рассмотрении близких предметов зрительные оси сходятся, а более далеких - расходятся. Сведение осей при рассматривании близких предметов называется конвергенцией, а разведение - дивергенцией.

      Формирование изображения на сетчатке. Благодаря одновременному движению обоих глазных яблок получается четкое изображение на сетчатке. В случае нарушения содружественных движений глаз возникает косоглазие, и происходит расстройство бинокулярной фиксации предмета, т.к. изображение от разных глаз на сетчатке будет занимать на ней разное место. При разглядывании предмета обоими глазами изображение от предметов попадает в идентичные участки сетчатки обоих глаз и поэтому изображения от двух глаз сливаются в одно. Если же изображение попадает на разные участки сетчатки, то оно будет представляться раздвоенным. В этом легко убедиться, надавливая слегка на один глаз сбоку, в результате чего будет "двоиться" в глазах.

     Зрачковые рефлексы. В норме зрачки обоих глаз круглые, и их диаметр одинаков. При снижении общей освещенности зрачок рефлекторно расширяется. Следовательно, расширение и сужение зрачка - это реакция на снижение и увеличение общей освещенности. Диаметр зрачка также зависит от расстояния до фиксируемого предмета. При переводе взгляда от дальнего предмета к ближнему зрачки сужаются. В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые, иннервируемые парасимпатическими волокнами глазодвигательного нерва, к которым подходят нервы от ресничного узла. Радиальные мышцы иннервируются симпатическими нервами, отходящими от верхнего шейного симпатического  узла. Сокращение первых вызывает сужение зрачка (миоз), а сокращение вторых - расширение (мидриаз). Диаметр зрачка и зрачковые реакции - важные диагностические признаки при повреждении мозга.

     Светопреломляющий аппарат глаза. Глаз представляет собой сложную оптическую систему линз, которые образуют на сетчатке перевернутое и уменьшенное изображение внешнего мира.

        Основными преломляющими средами являются роговица и хрусталик. Хрусталик заключен в капсулу, которая прикреплена циановыми связками к ресничному телу. Благодаря сокращению ресничных мышц меняется кривизна хрусталика. Прохождение световых лучей через поверхность, разграничивающую две среды с разной оптической плотностью, сопровождается преломлением лучей (рефракцией). Например, при прохождении лучей через роговицу наблюдается их преломление, т.к. оптическая плотность воздуха и роговицы сильно отличаются. Далее лучи от источника света проходят через двояковыпуклую линзу - хрусталик. В результате преломления лучи сходятся в некоторой точке сзади хрусталика - в фокусе. Преломление зависит от угла падения световых лучей на поверхность линзы: Чем больше угол падения, тем сильнее преломляются лучи. Лучи, падающие на края линзы, больше преломляются, чем центральные лучи, проходящие через центр перпендикулярно линзе, которые совсем не преломляются. Это ведет к появлению на сетчатке размытого пятна, что уменьшает остроту зрения. Острота зрения отражает способность оптической системы глаза получать четкие изображения на сетчатке.

     Цветовое восприятие. Восприятие цвета колбочками связано с наличием трех их типов, которые соответственно реагируют на синий, зеленый и красный цвета. Промежуточные цвета воспринимаются при одновременном возбуждении колбочек двух типов и более. Отсутствие различения отдельных цветов называется частичной цветовой слепотой. Нарушение цветовосприятия называется дальтонизмом. Есть люди, которые не могут воспринимать красный, зеленый и другие цвета.

     Сетчатка. Пигментные клетки. Палочки и колбочки расположены на задней поверхности сетчатки, поэтому падающий в глаз свет проходит через два других слоя и только тогда достигает наружных сегментов фоторецепторов. Таким образом, светочувствительные участки находятся в глубине сетчатки. Почему сетчатка устроена таким странным образом, что фоторецепторы находятся в глубине сетчатки, а не ближе к поверхности, точно неизвестно. Одна из возможных причин заключается в том, что позади рецепторов находится пигментный слой клеток, содержащий черный пигмент меланин. Меланин поглощает пришедшие через сетчатку световые лучи и не дает им отражаться назад и рассеиваться внутри глаза. Он играет ту же роль, что и черная окраска внутренних поверхностей фотокамеры. Клетки, содержащие меланин, способствуют также химическому восстановлению светочувствительного зрительного пигмента, который обесцвечивается на свету. Для выполнения этих функций необходимо, чтобы меланин находился вблизи от рецепторов. Сетчатка состоит из трех слоев. Самый наружный слой сетчатки от центра глазного яблока представлен фоторецепторами палочками и колбочками. Затем идет промежуточный слой, содержащий биполярные нейроны, которые связывают фоторецепторы с клетками третьего слоя. Третий, внутренний, слой образован ганглиозными клетками, дендриты которых соединены с биполярными клетками, а аксоны образуют зрительный нерв.

     Фоторецепторы. У человека слой рецепторов сетчатки состоит примерно из 120 млн. палочек и 6 млн. колбочек. Палочки и колбочки выполняют разные функции. Палочки осуществляют темновое видение, колбочки - цветовое. Более чувствительны к свету палочки. Они обеспечивают зрение при слабом освещении. Несмотря на различные функции, палочки и колбочки сходны по своему строению.

     Фотохимические реакции. Фотохимические процессы в принципе одинаковы у всех животных, как у беспозвоночных, так и у позвоночных. В палочках у человека содержится пигмент родопсин, а в колбочках - иодопсин. Родопсин представляет сложную молекулу, состоящую из липопротеина и ретиналя - альдегидной формы витамина А. При действии света происходит цикл фотохимических реакций, ведущих к расщеплению родопсина. Вслед за фотохимическими процессами происходят биоэлектрические изменения рецепторного потенциала, и далее возбуждение через биполярные нервные клетки переходит к ганглионарным клеткам, и по зрительному нерву достигает центральной нервной системы. В темноте происходит ресинтез родопсина. Процесс обновления наружных сегментов палочек осуществляется постепенно. Например, у некоторых обезьян - макак и резусов - каждая палочка обновляется за 9-12 дней. Эту функцию обновления, а также хранения витамина А и его производных выполняют пигментные клетки. Глаз предохраняет себя от избыточной освещенности путем изменения величины зрачка. Помимо этого сама сетчатка способна компенсировать увеличение яркости: существуют колбочки и палочки, функционирующие в разных диапазонах яркости, происходит перестройка рецептивных областей. Если на сетчатку попадает мало света, то синтез родопсина интенсифицируется, и концентрация родопсина увеличивается. Это фотохимическая основа темновой адаптации глаза. Одновременно зрение переходит на палочковую систему с помощью горизонтальных клеток и рецептивные поля этих нейронов увеличиваются. Также размер зрачка увеличивается.

      Промежуточный слой сетчатки содержит как биполярные, так и горизонтальные и апокриновые клетки. Биполярные клетки имеют входы от рецепторов, и часть их передает сигналы непосредственно к ганглиозным клеткам. Кроме такой прямой передачи импульсов в ганглиозные клетки существует и другой путь. Благодаря наличию горизонтальных и амакриновых клеток информация от рецепторов может распространяться параллельно сетчатке. Уже здесь происходит обработка зрительной информации.

     Зрительные пути. Зрительная информация передается в головной мозг по аксонам ганглиозных клеток сетчатки, образуя зрительный нерв. В его составе примерно 1 млн. волокон. Количество ганглиозных клеток более чем в 100 раз меньше числа фоторецепторных клеток. Импульсы от фоторецепторов далее подходят к биполярным клеткам. Каждая такая клетка связана с несколькими палочками и колбочками. В свою очередь, одна ганглиозная клетка контактирует со многими биполярными клетками. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Причем, рецептивные поля ганглиозных клеток перекрывают друг друга, что связано с наличием горизонтальных и амакриновых клеток, соединяющих по горизонтали биполярные и ганглиозные клетки. Поэтому одна ганглиозная клетка может быть связана с десятками тысяч фоторецепторов. В сетчатке есть центробежные нервные волокна, которые могут регулировать количество нейронов, охваченных возбужден.

       В мозге человека аксоны от левых половин сетчатки обеих глаз направляются к левой половине зрительной коры, а аксоны от правых половин сетчатки обеих глаз - к правой стороне зрительной коры. Аксоны, идущие от носовых половин обеих сетчаток, пересекаются. Место их пересечения называют зрительным перекрестом или хиазмой. После пересечения образуется зрительный тракт, который проходит через коленчатые тела, четверохолмие и другие мозговые структуры и поступает в корковый конец зрительного анализатора. Перекрещиваются только внутренние волокна, начинающиеся от медиальной (носовой) половины сетчатки. Наружные или височные волокна проходят через плазму не перекрещенными. Каждый зрительный тракт содержит волокна от внутренней половины сетчатки глаза противоположной стороны и наружной половины сетчатки глаза своей стороны. Таким образом, зрительный тракт содержит волокна от одноименных половин сетчатки обоих глаз - левых и правых. Следовательно, правый зрительный тракт проводит раздражение от левых половин полей зрения обоих глаз, а левый - правых. Нужно учесть, что преломляющие среды глаза проецируют на сетчатку обратное изображение видимого, а это значит, что предметы правого поля зрения воспринимаются левым половинами сетчатки и далее зрительные импульсы передаются по левому зрительному тракту.

      В зрительной коре спроецированы все мельчайшие участки сетчатки, и именно в коре зрительные сигналы интерпретируются. Различные нейроны возбуждаются от различных раздражителей. Это могут быть цвет, контраст, движение, контуры предмета, разрывы в контуре. Некоторые нейроны реагируют на предъявление изображений лиц. И при участии как лобных, так и других отделов мозга осуществляется интерпретивная функция коры, в результате чего формируется зрительное восприятие мира. От сетчатки импульсы подходят также к гипоталамусу, благодаря чему происходит согласование внутреннего циркадного ритма сна и бодрствования со сменой дня и ночи. Зрительные сигналы по таламическим путям достигают теменных зрительных ассоциативных зон. Ганглиозные клетки сетчатки связываются с вестибулярным аппаратом и с мозжечком.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

     Глаза ребенка выполняют значительную зрительную работу. От того, как соблюдаются правила гигиены, зависит и утомление органов зрения, и сохранение их полноценной функции на будущее.

Ученые связывают нарушение зрения с общим состоянием организма, поэтому занятия физической культурой крайне необходимы детям. Ведущие ученые рекомендуют  привлекать детей к занятиям в основной группе по физической культуре. Эти дети могут сдавать нормы ГТО, посещать уроки физкультуры, заниматься в спортивных секциях, участвовать в соревнованиях, что имеет не только оздоровительное, но и психологическое значение. Разумеется, физические нагрузки должны дозироваться с учетом возраста и подготовленности ребенка.

        Кроме того, для учащихся младших классов рекомендуется включать в занятия физической культурой (например, в уроки физкультуры) специальные упражнения (2—3) для глаз, например, такие: при исходной позиции ноги на ширине плеч. руки в стороны, круговые движения руками вперед и назад. В это время следить за кончиком большого пальца. Повторить 3—4 раза. Второе упражнение такое. Исходная позиция: сидя на стуле, скамейке, зажмурить и открыть глаза. Выполняется в среднем темпе, повторить 3—4 раза.

      Каждый учащийся уже в начальной школе должен овладеть рядом важных навыков. Из них самый трудный для усвоения: соблюдение необходимого расстояния от глаз до рабочей поверхности (тетради, книги). Овладение правилами самоконтроля и применение их. Кроме того, в начальной школе ребенок должен выработать навыки:

1.                заниматься при достаточном и правильном освещении;

2.                соблюдать ритм зрительной работы, гигиену просмотра телевизионных передач;

3.                выполнять гимнастику для глаз и уметь давать глазам отдых.

Слуховой анализатор. Адекватный раздражитель – звук. Слуховой анализатор имеет 3 отдела:

1.                периферический  - орган слуха;

2.                проводниковый – нервные пути;

3.                корковый , расположенный в височной доле головного мозга.

Рецепторные клетки, воспринимающие звук, расположены глубоко в черепе, в самой плотной части человеческого скелета – пирамиде височной кости. В процессе филогенетического развития животного мира нежные, легко ранимые слуховые рецепторные клетки постепенно погружались в глубь черепа, одновременно развивался аппарат, с помощью которого звук может достигать звуковоспринимающих  клеток без искажений и потерь, то есть аппарат проведения звуков. К моменту рождения ребёнка звукопроводящий аппарат, несмотря на то, что отличается от такового у взрослых по размерам и расположению некоторых деталей, уже полностью выполняет функцию проведения звука.

     В состав звукопроводящего аппарата входят: ушная раковина, наружный слуховой проход, барабанная перепонка, барабанная полость со слуховыми косточками и мышцами, слуховая труба, окна лабиринта и жидкость вестибулярной и барабанной лестниц улитки. Каждая часть имеет своё функциональное назначение, поэтому существует определённая зависимость между характером потери слуха и поражением каждого отдела. Наружный слуховой проход  выполняет практически только проводящую функцию для звука. Его длина и ширина не влияет на усиление и ослабление звука. Звуковая волна достигает среднего уха, пройдя наружный слуховой проход, и приводит в движение барабанную перепонку и слуховые косточки: молоточек, наковальню и стремя,  которое как бы вставлено в окно преддверия внутреннего уха (лабиринта). Соотношение площадей барабанной перепонки и окна преддверия равно примерно 20: 1. Нижний отдел барабанной перепонки расположен напротив окна улитки и как бы защищает его, экранирует от звуковой волны. В результате сочетания этих факторов: разницы площади барабанной перепонки и основания стремени, а также экранирующего эффекта её нижних отделов - происходит усиление звука.  Система колеблющихся слуховых косточек обеспечивает в основном передачу звука, усиливая его в норме очень незначительно. В среднем ухе имеются две мышцы: напрягающая барабанную перепонку и стременная. Непосредственно они не проводят звуковые волны, но выполняют функции, регулирующие этот процесс. Они приспосабливают  звукопроводящий аппарат к оптимальной передаче звука и выполняют защитную функцию при сильных звуковых раздражениях, уменьшая подвижность слуховых косточек и защищая внутреннее ухо. Слуховая труба имеет важное значение для проведения звука в среднем ухе. Она выполняет вентиляционную функцию, а также служит для поддержания в барабанной полости давления, одинакового с  внешним. Изменение вентиляционной функции приводит к снижению остроты слуха, ухудшению восприятия звуков низкой частоты в результате нарушения колебаний барабанной перепонки. Слуховая труба имеет ряд защитных механизмов, препятствующих попаданию инфекции из носоглотки в барабанную полость.

     Во внутреннем ухе усиленная звуковая волна с помощью системы барабанная перепонка – слуховые косточки, достигает окна преддверья, и её колебания передаются на перилимфу лестницы преддверья улитки. Дальнейший путь звуковой волны проходит уже по перилимфе лестницы преддверия улитки до её верхушки. Здесь через отверстие улитки колебания распространяются на перилимфу барабанной лестницы, слепо заканчивающейся окном улитки, затянутым плотной мембраной – вторичной барабанной перепонкой. В результате вся энергия звука оказывается сосредоточенной в пространстве, ограниченном стенкой костной улитки, костным спиральным гребнем и базилярной пластинкой. Движение базилярной пластинки вместе с расположенным на ней спиральным (кортиевым) органом  приводят к непосредственному контакту рецепторных волосковых клеток с покровной мембраной. Это становится окончанием проведения звука и началом  звуковосприятия – сложного физико-химического процесса, сопровождаемого возникновением  слуховых электрических биопотенциалов.

Вся эта сложная система проведения звуковой волны с участием ушной раковины, наружного слухового прохода, барабанной перепонки, слуховых косточек, перилимфы вестибулярной и барабанной лестницы условно называется воздушным путём проведения звука.

     Кроме воздушного пути проведения или подведения звука к рецепторным клеткам, существует костный путь проведения звука. Звуковые волны не только попадают в наружный слуховой проход, но и приводят в колебание кости черепа. В результате различной подвижности лабиринтных окон  также происходит незначительное движение перилимфы от окна преддверия к окну улитки, зависящее от компрессии  и инерции слуховых косточек, в основном стремени. При костном проведении звука лишь высокие звуки с малой амплитудой колебаний достигают рецепторных клеток.

  Головной мозг, с окружающими его оболочками находится в полости мозгового черепа. Верхняя вентральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя поверхность - основание головного мозга, имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа.

 Масса его составляет в среднем 1245 г у женщин и 1394 г у мужчин, но может колебаться от 1100 до 2000 г. У новорожденного головной мозг относительно большой: 390 г у мальчиков и 355 г у девочек, что составляет 12 - 13% массы (у взрослых – 2,5%). К концу первого года жизни масса мозга удваивается, а к 3-4 годам утраивается. До 4 лет головной мозг ребенка растет равномерно в высоту, длину и ширину. В дальнейшем преобладает рост в высоту. После 7 лет мозг растет медленно и достигает максимальной массы к 20-29 годам. После 55-60 лет масса мозга несколько уменьшается. В головном мозге выделяют три основных отдела – задний, средний и передний мозг. Задний мозг включает продолговатый мозг, мост и мозжечок, средний – ножки мозга, четверохолмие и ряд ядер, передний – промежуточный мозг и большие полушария. При осмотре препарата головного мозга хорошо заметны три его наиболее крупные составные части. Это парные полушария большого мозга, мозжечок и мозговой ствол.

Поделись с друзьями
Добавить в избранное (необходима авторизация)