IIIначало ТЕРМОДИНАМИКИ: по мере приближения температуры к абсолютному нулю энтропия всякой равновесной системы при изотермических процессах перестает зависеть от каких-либо термодинамических параметров состояния и в пределе принимает одну и туже для всех систем постоянную величину, которую можно положить равной нулю.
или ,где - любой термодинамический параметр.
Постоянство энтропии при согласно III начала ТЕРМОДИНАМИКИ означает что изотермический процесс является одновременно и изоэнтропическим, а следовательно, и адиабатическим. Таким образом, по третьему началу ТЕРМОДИНАМИКИ нулевая изотерма совпадает с нулевой адиабатой.
Некоторые следствия III начала ТЕРМОДИНАМИКИ:
1) Недостижимость абсолютного нуля температуры.
Из третьего начала ТЕРМОДИНАМИКИ непосредственно следует недостижимость абсолютного нуля температуры. Действительно, нулевая изотерма совпадает с нулевой изоэнтропой , т.е. с граничным членом семейства . Но охлаждение осуществляется в результате адиабатического процесса, когда система производит работу за счет убыли своей внутренней энергии. Так как адиабаты не пересекаются, то состояние с не может быть достигнуто никаким адиабатическим процессом, поэтому нельзя достигнуть ни в каком конечном процессе и абсолютный нуль температуры, совпадающей с ; к нему можно лишь асимптотически приближаться.
2) Термические коэффициенты обращаются в ноль при .
Термический коэффициент расширения и термический коэффициент давления , как и вообще термодинамические величины и , характеризующие поведение системы при изменении температуры, могут быть получены дифференцированием соответствующих обобщенных сил по температуре, где - соответствующий данной обобщенной силе независимый параметр.
Используя первое начало ТЕРМОДИНАМИКИ, нетрудно убедится, что , а так как энтропия перестает зависеть от параметров состояния, то, следовательно, и термические коэффициенты обращаются в ноль.
Þ .
В частном случае если в качестве обобщенной силы выбираем и соответственно, , то Þ при . Принимая в качестве обобщенных сил поверхностное натяжение , ЭДС гальванического элемента и т.д. из формулы получаем, что все эти величины при перестают зависеть от температуры и следовательно, температурный коэффициент поверхностного натяжения температурный коэффициент ЭДС и т.д. должны обращаться в нуль при приближении температуры к абсолютному нулю. (температурный коэффициент поляризации, намагниченности и т.д...). Эти выводы из III начала ТЕРМОДИНАМИКИ подтверждаются экспериментально.
3) Вычисление энтропии и поведение теплоемкостей при .
Третье начало ТЕРМОДИНАМИКИ упростило вычисление всех термодинамических функций. До установления третьего начала для вычисления энтропии необходимо было знать температурную зависимость теплоемкости и термическое уравнение состояния.
Согласно третьему началу, энтропию можно находить, зная лишь зависимость теплоемкости от температуры и не располагая термическим уравнением состояния, которое для конденсированных тел неизвестно. Действительно из выражений для теплоемкостей , по третьему началу, интегрированием получаем:,
Важнейшая задача вычисления энтропии сводится к определению лишь температурной зависимости теплоемкости. По третьему началу энтропия при конечна, поэтому интегралы в формулах должны быть сходящимися. Это будет выполняться, если подынтегральные функции на нижнем пределе возрастают медленнее, чем :
поэтому и,следовательно
теплоемкости стремятся к нулю быстрее, чем .
5) Вычисление энтропийной и химической постоянных идеальный газов.
Второе начало ТЕРМОДИНАМИКИ оставляет открытым вопрос о явном виде энтропийной и химической постоянных идеального газа. Знание этих постоянных необходимо при рассмотрении равновесия в различных системах (химические реакции, испарение и др.). Третье начало может быть косвенно использовано для решения этой задачи, хотя классический идеальный газ и не удовлетворяет третьему началу.
Идея вычисления состоит в том, что рассматривается условие равновесия газа и твердого тела одного и того же вещества (равенство химических потенциалов вещества в обеих фазах), в которое входят выражения энтропии, как газа, так и твердого тела. Энтропия твердого тела определяется формулами ,. Для энтропии идеального газа используется выражение . Энтропийная постоянная в уравнении связана с химической постоянной газа. Эти постоянные можно вычислить методами статистической физики.
Поможем написать любую работу на аналогичную тему