Подсчет числа состояний в статистике Ферми-Дирака. Различаем уровни энергии и различные состояния в пределах одной и той же энергии. Число различных состояний в пределах -го энергетического уровня , число этих состояний вообще различно для различных энергетических уровней. В этой модели частицы представляются шариками, которые нужно разместить по различным состояниям. Причем в модели Бозе-Эйнштейна в каждом состоянии может быть любое число шаров, а в модели Ферми-Дирака в одном состоянии может быть только один шар. Шары неразличимы между собой. Обозначим число шаров и проведем расчет числа возможных размещений шаров для модели Ферми-Дирака.
На каждом энергетическом уровне может находиться частиц, причем . Полное число частиц на всех уровнях равно . Прежде всего найдем число способов, сколькими не различимых между собой предметов могут быть размещены по местам. Ответ дается формулой, которая для рассматриваемых величин имеет вид: .
На каждом энергетическом уровне микросостояния независимы, и не играет роли, какие именно из частиц, находятся в каком именно состоянии, поэтому полное число состояний в совокупности всех энергетических уровней равно произведению числа микросостояний на каждом отермодинамикиельном энергетическом уровне. - в произведении учитывает все возможные энергетические уровни.
- число микросостояний для модели Ферми-Дирака.
Удовлетворяя требование максимума числа микросостояний в равновесном состоянии, являющемся наиболее вероятным состоянием системы получаем формулу:
- распределения Ферми-Дирака, где - число частиц, приходящихся на одно квантовое состояние с энергией . Параметр . Параметр определяется нормировкой на полное число частиц, выражающей условие сохранения числа частиц: .
При очень малых значениях экспоненциальный член в знаменателе правой части должен быть значительно больше единицы. Поэтому единицей в знаменателе можно пренебречь и записать распределение в виде , где . Если теперь перейти к непрерывному спектру, то получится экспоненциальное распределение Максвелла-Больцмана.
Формулы статистики Ферми-Дирака переходят в формулы статистики Максвелла-Больцмана, когда среднее число частиц, приходящееся на одно квантовое состояние мало.
Поможем написать любую работу на аналогичную тему
Реферат
Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
От 250 руб
Контрольная работа
Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
От 250 руб
Курсовая работа
Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
От 700 руб