Нужна помощь в написании работы?

Как установлено И.П.Павловым, основным фундаментальным принципом работы коры больших полушарий головного мозга является аналитико-синтетический принцип. Ориентация в окружающей среде связана с вычленением отдельных ее свойств, сторон, признаков (анализ) и объединением, связью этих признаков с тем, что является полезным или вредным для организма (синтез). Синтез —это замыкание связей, а анализ —это все более тонкое отчленение одного раздражителя от другого. Аналитико-синтетическая деятельность коры головного мозга осуществляется взаимодействием двух нервных процессов: возбуждения и торможения. Эти процессы подчинены следующим законам.
Закон иррадиации возбуждения. Очень сильные (так же, как и очень слабые) раздражители при длительном воздействии на организм вызывают иррадиацию —распространение возбуждения по значительной части коры больших полушарий.
Только оптимальные раздражители средней силы вызывают строго локализированные очаги возбуждения, что и является важнейшим условием успешной деятельности.
Закон концентрации возбуждения. Возбуждение, распространившееся из определенного пункта по другим зонам коры, с течением времени сосредоточивается в месте своего первичного возникновения. Этот закон лежит в основе главного условия нашей деятельности —внимания (сосредоточенности сознания на определенных объектах деятельности).
При концентрации возбуждения в определенных участках коры мозга происходит его функциональное взаимодействие с торможением, это и обеспечивает нормальную аналитико-синтетическую деятельность. Закон взаимной индукции нервных процессов. На периферии очага одного нервного процесса всегда возникает процесс с обратным знаком.
Если в одном участке коры сконцентрирован процесс возбуждения, то вокруг него индуктивно возникает процесс торможения. Чем интенсивнее сконцентрированное возбуждение тем интенсивнее и шире распространен процесс торможения.
Наряду с одновременной индукцией существует последовательная индукция нервных процессов —последовательная смена нервных процессов в одних и тех же участках мозга.
Только нормальное соотношение процессов возбуждения и торможения обеспечивает поведение, адекватное (соответствующее) окружающей среде. Нарушение баланса между этими процессами, преобладание одного из них вызывает значительные нарушения в психической регуляции проведения.

Понятие о биоэлектрических явлениях. Теория биопотенциалов

Биоэлектрические явления в тканях- это разность потенциалов, которая возникает в тканях в процессе нормальной жизнедеятельности. Эти явления можно регистрировать, используя трансмембранный способ регистрации. При этом один электрод располагается на наружной поверхности клетки, другой - на внутренней.

При таком способе регистрируются:

  1. потенциал покоя или мембранный потенциал;
  2. потенциал действия.

Общепринятой теорией возникновения биопотенциалов является мембранно-ионная теория. Согласно ей причина возникновения разности потенциалов - неравномерное распределение ионов по обе стороны клеточной мембраны (в системе цитоплазма - кружающая среда). Авторы этой теории: В.Ю. Чаговец - 1896 г., Бернштейн 1902-1903 гг., Ходжкин, Хаксли, Кац.

Механизм возникновения мембранного потенциала

Существует мембранно-ионная теория биопотенциала. Особенности строения и свойства мембраны объясняют неравномерное распределение ионов. Клеточная мембрана - наружная поверхность возбудимой клетки, которая является носителем двойного электрического заряда. Строение клеточной мембраны описано в 1935 г. Даниэлли и Доусоном. Толщина мембраны 7-10 нм.

Клеточная мембрана состоит из 3-х слоев: двойной слой фосфолипидов и слой белков (внутри).

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Слой фосфолипидов является прерывистым, белки клеточной мембраны подвижны и свободно плавают в липидном геле. Эти белковые молекулы по-разному погружены в мембрану. Но всегда сохраняют контакт с окружающей средой с помощью полярной группы. На внутренней поверхности мембраны белков больше, чем на наружной.

Функции белков клеточной мембраны:

  1. структурная;
  2. рецепторная:у белков наружной поверхности клетки есть активный центр, который обладает сродством к различным веществам (гормонам, биологически активным веществам и т. д.);
  3. ферментативная активируется под влиянием различных факторов;
  4. транспортная - полностью погруженные в липидный гель белки образуют каналы, через которые проходят различные вещества.

Обнаружены каналы для всех потенциал образующих ионов: К+, Na+, Са2+, Cl-. Каналы могут быть открыты или закрыты благодаря воротам.

Существуют 2 вида ворот:

  1. активационные (в глубине канала);
  2. инактивационные (на поверхности канала).

Ворота могут находиться в одном из 3-х состояний:

  1. открытое состояние (открыты оба вида ворот);
  2. закрытое состояние (закрыты активационные ворота);
  3. инактивационное состояние (закрыты инактивационные ворота).

Существуют 2 вида клеточных каналов в зависимости от причины их открытия:

  1. потенциалзависимые - открываются при изменении разности потенциалов;
  2. потенциалнезависимые (гормонрегулируемые, рецепторрегулируемые) - открываются при взаимодействии рецепторов с веществами.

Свойства клеточной мембраны. Возникновение потенциала - результат збирательной проницаемости мембраны.

Причины избирательной проницаемости:

  1. механический фактор - у ионов К+ - малый диаметр, поэтому они проходят через узкие калиевые каналы. Диаметр ионов Na+ в 2 раза больше, чем у ионов К+. Поэтому в состоянии покоя ионы Na+, через узкие калиевые каналы почти не проходят;
  2. электостатический фактор - у входа в канал есть заряд, создаваемый белковой молекулой;
  3. конкурентный фактор - в состоянии покоя натриевые каналы блокированы ионами Са2+. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К+, Cl- и почти непроницаема для ионов Na+. Таким образом на наружной поверхности клетки преобладают ионы Na+ и Cl, а внутри - ионы К+ и анионы органических соединений. Неравномерное распределение - результат сил Доммановского равновесия.

Вывод:

  1. клеточная мембрана имеет каналы, через которые проходят ионы;
  2. клеточная мембрана обладает избирательной проницаемостью;
  3. потенциалобразующие ионы неравномерно распределены по обе стороны клеточной мембраны.

Мембрана обладает избирательной проницаемостью для растворимых веществ, что необходимо для:

1.      отделения клетки от внеклеточной среды;

2.      обеспечения проникновения в клетку и удержания в ней необходимых молекул (таких, как липиды, глюкоза и аминокислоты), а также удаления из клетки продуктов метаболизма (в том числе ненужных);

3.      поддержания трансмембранного градиента ионов.

Внутриклеточные органеллы также могут обладать избирательно проницаемой мембраной. Например, в лизосомах мембрана поддерживает концентрацию ионов водорода (Н+) в 1000-10000 раз больше, чем в цитозоле.

Транспорт через мембрану может быть пассивным, облегченным или активным.

1. Пассивный транспорт – это движение молекул или ионов по концентрационному либо электрохимическому градиенту. Это может быть простая диффузия, как в случае проникновения через плазматическую мембрану газов (например О2 и СО2 ) или простых молекул (этанола). При простой диффузии растворенные во внеклеточной жидкости небольшие молекулы последовательно растворяются в мембране и затем во внутриклеточной жидкости. Указанный процесс неспецифичен, при этом скорость проникновения через мембрану определяется степенью гидрофобности молекулы, то есть ее жирорастворимостью. Скорость диффузии через липидный бислой  прямо пропорциональна гидрофобности, а также трансмембранному градиенту концентрации или электрохимическому градиенту.

1.2. Активный транспорт – это движение ионов или молекул через мембрану против градиента концентрации за счет энергии гидролиза АТФ. Имеются  три основных типа активного транспорта ионов:

1.      натрий-калиевый насос – Na+ /K+–аденозинтрифосфатаза (АТФаза), переносящая Na+ наружу, а K+ внутрь;

2.      кальциевый (Са2+) насос – Са2+-АТФаза, которая  транспортирует Са2+ из клетки или цитозоля в саркоплазматический ретикулум;

3.      протонный насос – Н+-АТФаза. Созданные активным транспортом градиенты ионов могут быть использованы для активного транспорта других молекул – таких, как некоторые аминокислоты и сахара (вторичный активный транспорт).

1.3.Ca2+ –насос представляет собой систему активного транспорта типа Е1 – Е2 , состоящую

из интегрального мембранного белка, который в процессе переноса Ca2+ фосфорилируется по остатку аспартата. При гидролизе каждой молекулы АТФ происходит перенос двух ионов Ca2+. В эукариотических клетках Ca2+ может связываться с кальцийсвязывающим белком, называемым кальмодулином, и весь  комплекс связывается с Ca2+-насосом. К Ca2+-связывающим белкам отнсятся также тропонин С и парвальбумин.

В процессе восстановления после потенциала действия работа натрий-калиевого насоса обеспечивает «откачку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, т. е. возвращение к исходной асимметрии их концентрации по обе стороны мембраны. На работу этого механизма тратится около 70% всей необходимой клетке энергии.

Ионы Са, подобно ионам Na, активно выводятся из клеток Ca2+-АТФазой. Особенно большое количество белка кальциевого насоса содержат мембраны эндоплазматического ретикулума. Цепь химических реакций, ведущих к гидролизу АТФ и перебросу Ca2+ , может быть записана в виде следующих уравнений:

                              Mg2+

2Сан + АТФ + Е1 Û Са2 – Е – Р + АДФ

                   Mg2+

Са2 – Е – Р Û  2Савн  + PO43-  + Е2

Е2 Û Е1

Где Сан  - Ca2+  , находящийся снаружи;

Савн  - Ca2+  , находящийся внутри;

Е1  и Е2 - различные конформации фермента переносчика, переход которых из одной в другую связан с использованием энергии АТФ.

Система активного вывода Н+ из цитоплазмы поддерживается двумя типами реакций: деятельностью электрон-транспортной цепи (редокс-цепи) и гидролизом АТФ. Оба – и редокс- и гидролитический Н+-насосы – находятся в мембранах, способных превращать световую или химическую энергию в энергию  DmН+ (то есть плазматических мембранах прокариот, сопрягающих мембранах хлоропластов и митохондрий). В  результате работы  Н+  АТФазы и/или  редокс-цепи транслоцируются протоны, и на мембране возникает протондвижущая сила (DmН+). Электрохимический градиент ионов водорода, как показывают исследования, может быть использован для сопряженного транспорта (вторичный активный транспорт) большого числа метаболитов – анионов, аминокислот, сахаров и т.д.

С активностью плазматической мембраны связаны обеспечивающие поглощение клеткой твердых и жидких веществ с большой молекулярной массой, - фагоцитоз и пиноцитоз (от герч. фагос – есть, пинос – пить, цитос – клетка). Клеточная мембрана образует карманы, или впячивания, которые втягивают вещества извне. Затем такие впячивания отшнуровываются и окружают мембраной капельку внешней среды (пиноцитоз) или твердые частицы (фагоцитоз). Пиноцитоз наблюдается в самых разнообразных клетках, особенно в тех органах, где происходят процессы всасывания.

Поделись с друзьями