Нужна помощь в написании работы?

Вариация выборочной средней. Центральная предельная теорема. Правило «трех сигм».

Предположим, что мы имеем дело с идеальной генеральной совокупностью, каждый элемент которой обладает абсолютно равными шансами попасть в выборку. Численность генеральной совокупности не должна быть особенно большой, чтобы не усложнять дело. Предположим, что объем нашей генеральной совокупности 5 человек. Предположим, далее, что тема нашего исследования — «затраты времени на чтение». Значения переменной «затраты времени на чтение» устанавливаются в минутах в среднем за день26.

Следующее допущение еще более условно. Мы должны определить параметры каждой из единиц генеральной совокупности и вычислить средние затраты времени на чтение. В реальности, где объем генеральных совокупностей составляет обычно тысячи и миллионы единиц, такая задача социологу не по силам. Но в нашем-то примере генеральная совокупность состоит всего из пяти человек. Вернемся к примеру и предположим, что мы обладаем неким демоническим знанием о затратах времени на чтение у пяти человек (табл. 5.8).

Таблица 5.8

Затраты времени на чтение, матрица данных генеральной совокупности из пяти человек

Единицы генеральной совокупности

Затраты времени на чтение в среднем за день, мин

1. Иван

10

2. Петр

20

З. Александр

40

4. Иосиф

50

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

5. Павел

80

Искомая характеристика генеральной совокупности — средние затраты времени на чтение: 40 мин. Нормальные проектировщики выборки всего этого не знают — у них нет возможности обследовать всю генеральную совокупность из пяти семей — поэтому и начинают строить выборку. Допустим, что объем выборочной совокупности из 2 человек достаточен для заданного уровня надежности предсказания. Тогда мы можем начать процедуру отбора единиц исследования. Напомним, что все 5 человек имеют равные шансы быть опрошенными. Здесь не помешает и напоминание об аналогии социологического отбора со случайным процессом: как будто мы вынимаем из мешка шар и регистрируем его параметры. Поскольку объем выборки 2 человека, опросим Ивана и Павла, подсчитаем их средние затраты времени на чтение и зарегистрируем результат: 45 мин. Обследование завершено. В социологической практике опросы ограничиваются одной выборкой, а в нашем примере полезно осуществить и другие выборки из той же генеральной совокупности. Ведь кроме Ивана и Павла есть и иные единицы, имеющие такие же шансы быть обследованными. Произведем вторую выборку — опросим Ивана и Петра. Их средняя составит 15 мин. В третью выборку оба раза попал Павел — после регистрации результатов опроса единица возвращается в генеральную совокупность и может быть «вынута» вторично — такая выборка называется возвратной. Выборочная средняя «двойного» опроса Павла составляет 80 мин. Четвертый раз выпали Александр и Иосиф — средняя 45 мин. Предположим, в пятую выборку два раза вошел Иван, средняя составляет 10 мин. Мы видим, что все происходящее слишком случайно и, тем не менее, следует подсчитать ошибки выборки — разницу между значениями выборочной и генеральной совокупности по модулю (пока безразлично, какой знак имеет отклонение):  (табл. 5.9)

Таблица 5.9

Затраты времени на чтение в пяти случайных выборках и соответствующие отклонения выборочных средних от генеральной средней, мин

Выборки

Выборочные средние

Генеральные средине

Ошибка выборки

1. Иван+Павел

45

40

5

2. Иван+Петр

15

40

25

3. Павел+Павел

80

40

40

4. Александр+ Иосиф

45

40

5

5. Иван+Иван

10

40

30

Уже на этой стадии мы можем сделать некоторые важные выводы. Во-первых, мы видим, что в одной и той же генеральной совокупности можно произвести много выборок, результаты которых иногда значительно отличаются друг от друга. У нас в одной выборке средняя составила 80 мин, а в другой— 10 мин. Во-вторых, поскольку никаких специальных действий для получения определенной выборки не предпринимается и каждая выборка (пара индивидов) имеет равный шанс, можно надеяться, что выборочная средняя является случайной величиной.

То обстоятельство, что случайные выборки дают столь различающиеся результаты, подозрительно, и есть основания заняться установлением всех возможных выборочных средних и, соответственно ошибок выборки. Для этого надо выписать все сочетания единиц исследования по две в генеральной совокупности из пяти единиц (вместо имен опрошенных удобнее оперировать номерами). Напомним, что отбор единиц — возвратный, т. е. каждая из них возвращается обратно в генеральную совокупность и может попасть в выборку еще и еще раз, разумеется, с такими же шансами, что и остальные единицы. Всего таких сочетаний может быть пт, где п — объем генеральной совокупности, т — объем выборки (табл. 5.10).

Таблица 5.10

Все возможные выборки по 2 единицы из генеральной совокупности в 5 единиц и соответствующие им значения выборочной средней

Первый замер

Второй замер

1

1

10

2

15

3

25

4

30

5

45

2

1

15

2

20

3

30

4

35

5

50

Продолжение

Первый замер

Второй замер

3

1

25

2

30

3

40

4

45

5

60

4

1

30

2

35

3

45

4

50

5

65

5

1

45

2

50

3

60

4

65

5

80

Мы видим, что из 25 возможных выборок и соответствующих средних только одна совпала с генеральной средней. Разброс значений выборочной средней составляет от 10 до 80 мин. Отсюда видно, что выборки могут быть хорошими и плохими.

Теперь мы имеем возможность оценить вероятность различных выборок. Мы видим весь диапазон вариации выборочных параметров — от 10 до 80 мин. Однако эта картина еще мало о чем говорит. Ясно одно: каждая отдельная выборка в той или иной степени далека от «истинной» — генеральной — средней. Вместе с тем нетрудно заметить, что из 25 выборок одни встречаются редко, а другие часто. Дальнейшая задача заключается в том, чтобы организовать совокупность выборок и найти в ней внутреннюю логику. Речь идет уже не о выборочных совокупностях (у нас они включают по две единицы), а о совокупности выборок. Ее объем составляет 25 единиц. Просмотрим правую колонку табл. 5.10 сверху вниз и сгруппируем значения выборочных средних в порядке их возрастания: 10, 15, 15, 20, 25, 25, 30, 30, 30, 30, 35, 35, 40, 45, 45, 45, 45, 50, 50, 50, 60, 60, 65, 65, 80. Здесь уже можно видеть, что «срединные» выборочные средние встречаются чаще, чем «крайние». Эта важная особенность распреде

ления выборочных средних становится особенно отчетливой, если мы подсчитаем для каждого значения выборочной средней частоту, с которой она встречается среди всех 25 выборок (табл. 5.11).

Таблица 5.11

Частотное распределение всех выборочных средних затрат времени на чтение в генеральной совокупности из пяти единиц, условный пример

Значения выборочных средних, мин

Количество выборок, которые имеют данное среднее значении

Вероятность появления данной выборки

10

1

0,04

15

2

0,08

20

1

0,04

25

2

0,08

30

4

0,16

35

2

0,08

40

1

0,04

45

4

0,16

50

3

0,12

60

2

0,01

80

1

0,04

Всего

25

1,00

Удивительно: несмотря на то что частотное распределение стремится к своему центру тяжести, «истинное» значение исследуемой переменной встретилось в наших 25 выборках только один раз. Однако продолжим расчеты и вычислим среднюю величину всех выборочных значений. Если вспомнить о том, что выборочное значение само представляет собой среднюю величину, задача формулируется более точно: подсчитаем среднюю всех выборочных средних. Это можно сделать в ранжированном ряду выборочных средних, который мы построили, но лучше исчислить средневзвешенную величину: умножить каждое значение переменной на его частоту, сложить произведения, а полученную сумму разделить на общее число наблюдений.

Здесь мы подходим к важному статистическому открытию, которое называется центральной предельной теоремой. Его суть заключается в том, что средняя всех возможных выборочных средних равна генеральной средней.

Действительно, подсчитав среднюю всех средних, мы получим  = 40 мин. И что бы мы ни взяли и качестве предмета выборочного обследования, всегда случайные выборки будут распределяться вокруг генеральной средней.

Сама по себе центральная предельная теорема малопрактична, поскольку произвести все выборки из генеральной совокупности несоизмеримо труднее, чем обследовать всю генеральную совокупность. В нашем примере генеральная совокупность составляет 5 человек, а выборок — 25. Если генеральная совокупность достаточно многочисленна, отдельные выборки остаются единственным средством приближения к генеральной средней. У нас каждая выборка, за исключением одной, показывающей истинное значение 40 мин, характеризуется некоторой ошибкой, и вероятность этой ошибки, равно как и вероятность точного попадания в середину, может быть исчислена путем деления частоты i-й выборки на число всех выборок.

Мы знаем генеральную среднюю в пяти наблюдениях и сейчас имеем возможность рассчитать вероятность «попадания» в среднюю каждого отдельного наблюдения. Это 1/5, или 20%. Вероятность того, что выборка из двух единиц покажет значение, равное генеральной средней, — 1/25 (1/5х1/5), или 4%. Если бы мы производили отбор трех человек из пяти, вероятность построения «точной» выборки равнялась бы 1/125 (1/5 х 1/5х 1/5) , или 0,16%. Но в данном случае и количество всех возможных выборок равнялось бы 53 = 125.

Итак, точное «попадание» в генеральную среднюю маловероятно, но следующий шаг заключается в том, чтобы узнать, каково среднее отклонение от выборочной средней. Для этого нам понадобится показатель среднего квадратического отклонения:

где х1 — i-я выборочная средняя, хсрсредняя

всех выборочных средних, pi—число наблюдений.

В нашем примере 25 выборок дают различные отклонения от средней, одни из них больше, другие меньше. Спрашивается, какова средняя вариация выборочных значений? Для подсчета μ надо определить расстояние от каждой выборочной средней до «центра» — общей средней, а сумму этих расстояний разделить на количество наблюдений — п. В этом смысл приведенной формулы, которую полезно записать в виде аналитической таблицы, содержащей цифры из нашего условного примера (табл. 5.12).

Таблица 5.12

Расчет среднего квадратического отклонения 25 выборочных средних

-

-2

P

-2

10

40

-30

900

900

15

40

-25

625

2

1250

20

40

-20

400

1

800

25

40

-15

225

2

450

30

40

-10

100 '

4

400

. 35

40

-5

25

2

50

40

40

0

0

0

0

45

40

5

25

4

100

50

40

10

100

3

300

60

40

20

400

2

800

65

40

25

625

2

1250

80

40

40

1600

1

1600

Сейчас мы располагаем всеми данными для расчета среднего квадратического отклонения: μ = 17,32 мин.

Величина среднего квадратического отклонения позволяет заранее предсказать, какое количество выборок в данной генеральной совокупности будут «плохими», т. е. отклонятся от средней на слишком большое расстояние, а сколько из них дадут приемлемые значения. Иными словами, ошибка выборки при условии, что она случайна, поддается априорному расчету. В нашем примере выборка (два человека из совокупности в пять человек) слишком мала, чтобы пытаться установить в ней какую-либо регулярность. Но сотни и тысячи случайных выборок, точнее, параметры случайных выборок, распределяются в соответствии с законом, который называется законом нормального распределения. Его суть заключается в том, что наибольшее число выборочных средних располагается в середине ряда плотности распределения, а крайние значения маловероятны. Чем больше число наблюдений, тем ближе распределение выборочных средних к нормальной кривой. Это дает возможность опираться на законы вероятностей и прогнозировать надежность выборочных наблюдений.

При идеальном случайном отборе в пределах одного среднего квадратического отклонения варьируют результаты 68,27% всех возможных выборок, в пределах двух средних квадратических отклонений — 95,45%, а в пределах трех «сигм» — 99,73%.

Это означает, что при достаточно большом числе замеров в среднем из каждых 1000 выборок 683 дадут значения, не выходящие за пределы одной «сигмы», 954 не выйдут за пределы двух «сигм», а 997 — за пределы трех «сигм». Это означает также, что при любой выборке есть риск ошибиться. В среднем лишь в трех выборках из 1000 ошибка будет больше заданных значений. Увеличим точность приближения к средней всех выборочных средних до двух «сигм», и риск ошибиться возрастет до 46 случаев из 1000; за пределы одного среднего квадратического отклонения выйдут 317 выборок из 1000 (рис. 5.2).

«Правило трех сигм» позволяет заранее оценить вероятность ошибки случайной выборки. Чем выше требования к точности, тем выше риск ошибки и соответственно ниже вероятность правильного ответа. Вообще, выборка аналогична стрельбе в цель: чем больше по размеру мишень, тем выше вероятность попадания. Если сделать 1000 выстрелов из оружия, прицел которого установлен правильно, 683 выстрела будут удачными в том смысле, что не выйдут за пределы одной «сигмы».

«Правило трех сигм» действует применительно к случайным процессам — выпадениям правильного «кубика», монетки, шарам. Но мы знаем, что и вариация выборочной средней является случайным процессом: средняя всех выборочных средних в точности равна генеральной средней, а среднее квадратическое отклонение тоже известно. Поэтому в любом ряду распределения можно установить пределы, в которых находятся выборочные средние с вероятностью 683 из 1000; 954 из 1000 и 997 из 1000.

Вернемся к условному примеру, где производилась выборка из двух человек в генеральной совокупности из пяти человек. Средние затраты времени на чтение составили в 25 выборках 40 мин. Среднее квадратическое отклонение 17,3 мин. Сейчас мы можем подсчитать область распределения, соответствующую одному среднему квадратическому отклонению: нижний предел 40 мин. — 17,3 мин = 22,7 мин;

Рис. 5.2. Распределение выборочных средних

верхний предел 40 мин + 17,3 мин = 57,3 мин. Какие из 25 выборочных средних попадают в этот интервал? Посмотрим табл. 5.11 и увидим, что в интервале от 22,7 мин до 57,3 мин имеются значения 25 мин — две выборки, 30 мин —четыре выборки, 35 мин — две выборки, 40 мин — одна выборка, 45 мин — четыре выборки и 50 мин — три выборки. Общей сложностью насчитывается 16 выборок из 25 (2+4+2+1+4+3). Переведем эту цифру в проценты и получим 64 — такова вероятность, что наша случайная выборка не выйдет за пределы одного среднего квадратического отклонения. Расхождение с одной «сигмой» обусловлено малочисленностью наблюдений.

Удвоенное среднее квадратическое отклонение равно 17,3 х 2 = 34,6 мин. Нижняя граница интервала составляет в данном случае 40 — 34,6 = 5,4 мин; верхняя граница: 40 + 34,6 = 74,6 мин. Из всех наших выборок только одна (80 мин.) вышла из этих пределов, а 24 уместились в две «сигмы». В нормальном распределении данный интервал включает 95,4% выборок. У нас таких 96%. Утроенное среднее отклонение охватит в нашем условном примере все выборочные средние. В реальности же три из 1000 случайных выборок выйдут за пределы «трех сигм».

Производя выборку, исследователь не имеет возможности установить ее среднее квадратическое отклонение—для этого понадобилось бы анализировать все выборочные средние. Приходится использовать установленное теорией соотношение между средним квадратическим отклонением выборочных средних и средним квадратическим отклонением генеральной совокупности  где п — объем выборки.

Очевидно, чем больше объем выборки, тем меньше вариация выборочных средних.

Проверим это соотношение на нашем условном примере: установим среднее квадратическое отклонение затрат времени на чтение у пяти человек (табл.5. 13).

Таблица 5.13

Расчет среднего квадратического отклонения в генеральной совокупности из пяти человек

Респондент

Затраты времени на чтение, мин

Отклонение индивидуального значения от среднего

Квадратотклоненияот среднего

Иван

10

-30

900

Петр

20

-20

400

Александр

40

0

0

Иосиф

50

10

100

Павел

80

40

1600

У нас есть возможность вычислить среднее квадратическое отклонение генеральной совокупности σген =24,5 мин. Теперь, узнав среднее квадратическое отклонение генеральной совокупности, мы можем вычислить среднее квадратическое отклонение выборочных средних μ = 17,32 мин.

Это соотношение, устанавливающее прямо пропорциональную зависимость средней ошибки выборки от среднего квадратического отклонения генеральной совокупности и обратно пропорциональную зависимость от корня квадратного из величины выборочной совокупности, позволяет не производить сотни и тысячи выборок. Ошибка выборки рассчитывается на основе сведений об однородности генеральной совокупности, а также об объеме выборки.

Вернемся к нашему примеру с затратами времени на чтение. Мы знаем среднее значение изучаемой переменной в генеральной сово


купности — 40 мин. — и ее среднее квадратическое отклонение — 24,52 мин. Средняя ошибка выборки объемом в две единицы равна 17,32 мин. Это означает, что из 1000 выборок 683 дадут результаты от 22,68 мин. (40 — 17,32) до 57,32 мин. (40 + 17,32). Если бы выборка состояла из трех человек, ее ожидаемая ошибка была бы поменьше: 14,14 мин. В данном случае с такой же вероятностью в 683 из 1000 мы можем утверждать, что результат выборочного наблюдения не будет ниже 25,86 мин и выше 54,14 мин. Выборка из четырех человек еще больше повысит точность предсказания: 12,25 мин. Интервал среднего отклонения от истинного значения признака уменьшился: от 27,75 мин. до 52,25 мин.

Таким образом, величина средней ошибки выборки, т. е. средняя всех отклонений выборочной средней от общей средней, зависит от двух параметров: от степени однородности распределения изучаемого признака в генеральной совокупности и объема выборки.

Представим себе, что обследуемая совокупность совершенно однородна — отклонения от средней равны нулю. Например, все респонденты имеют один и тот же возраст — вариация данного признака нулевая. Величина знаменателя в формуле μ не имеет значения, потому что, даже если выборка будет состоять из одного-единственного наблюдения, ошибка останется нулевой. При разнородной генеральной совокупности ошибка выборки уменьшается с увеличением ее объема. Если объем выборки приближается к объему генеральной совокупности, ошибка стремится к нулю.

Задача исчисления ошибки выборки сводится к определению вероятности того или иного варианта. В нашем примере выборочного наблюдения двух человек из пяти вероятность выборочного значения 40 мин, равно как и прочих, равна 0,04. Но вероятность установления значений от 35 до 45 мин. возрастает: 0,04 + 0,08 + 0,16 = 0,28 — это хорошо видно в табл. 5.11. Чем меньше точность, тем выше надежность выборочных данных.

«Сигмы» имеют в каждом конкретном случае разную размерность: минуты, белые и черные шары, метры, баллы. Метры и минуты нельзя сопоставить друг с другом. Поэтому целесообразно нормировать отклонения выборочной средней путем введения относительной величины:.

Величина t показывает, в каком отношении находится средняя ошибка выборки к одному среднему квадратическому отклонению. Аналогия со стрельбами в данном случае не покажется лишней. Чем меньше размер цели, тем меньше уверенность в попадании. При t = 1 отклонение выборочной средней от генеральной равно одной «сигме»  и, как мы знаем, вероятность такого варианта равняется 683 случаям из 1000, т. е. 0,683. При снижении точности предсказания в два раза, т. е. при t = 2, вероятность возрастает до 0,954, при t = 3 — до 0,997, при t = 4 — до 0,999.

Используя коэффициент t, мы можем ввести определение предельной ошибки выборки Δ. Предельная ошибка выборки непосредственно зависит от принятого нами уровня точности — коэффициента t. Δ= t х μ. Если мы не хотим ошибиться в своих заключениях, надо увеличить t, при t = 4 вероятность того, что выборочная средняя не выйдет за пределы четырех средних отклонений, составит 0,999.

Расчет средней ошибки выборки, как было показано выше, зависит от однородности генеральной совокупности — σген. Новыборка производится как раз для того, чтобы установить параметры генеральной совокупности. Поэтому практического смысла формула не имеет. Вместе с тем, при достаточно большом числе наблюдений среднее квадратическое отклонение выборочных средних от общей средней становится равным среднему квадратическому отклонению генеральной совокупности, т. е. меру вариации в генеральной совокупности можно заменить мерой вариации в совокупности выборочной. В данном случае μ обозначает пределы, в которых может находиться с определенной вероятностью генеральная средняя:

Рассмотрим частотное распределение выборочной совокупности 807 школьников по количеству имевшихся у них наличных денег (табл. 5.14).

Прежде всего необходимо подсчитать среднюю арифметическую где х — значения переменной, р — частоты. Среднее

количестводенег у ребенка составляло тогда 45 руб. Затем надо выяснить, насколько велика разнородность обследованных по интересующей нас переменной, т. е. среднее квадратическое отклонение По формуле средней ошибки выборки устанавливаем, что она равна 1,3 руб. Далее у нас есть возможность рассчитать предельную ошибку выборки Δ =t х μ. При t = 3, т. е. при вероятности 0,997, Δ = 3x1,3 = 3,9 руб. Определим интервал, в котором с вероятностью 997 шансов из 1000 заключена генеральная средняя: нижний предел =45-3,9=41,1 руб, верхний предел =45+3,9=48,9 руб.

Таблица 5.14

Распределение школьников по количеству имевшихся у них наличных денег, 1987 г., %

Количество денег, хi

Частота i-го признака, p

до 3 руб

25

75

3-10 руб

48

312

10 - 25 руб

230

4025

25 - 50 руб

280

10 500

50 -100 руб

160

12 000

100 -150 руб

52

6500

150 -200 руб

12

2100

больше 200 руб

5

1000

Всего

812

36 512

Вывод: с вероятностью 0,997 можно утверждать, что среднее количество денег у советских школьников в 1987 г. составляло от 41,1 до 48,9 руб. Если этот вывод не устраивает нас из-за своей приблизительности, мы имеем возможность повысить точность предельной ошибки, например, принять t = 1. Тогда Δ= 1,3 руб. Интервал сокращается: нижний предел составляет 45 — 1,3 = 43,7 руб; верхний предел 45 + 1,3 = 46,3 руб. Утверждать, что генеральная средняя будет находиться в установленных таким образом пределах, мы можем с вероятностью 0,683. Это значит, что мы ошибемся в 317 случаях из 1000.


Выборка должна быть достаточно большой, но, как мы знаем из опыта, ее объем выше определенного предела расширять нецелесообразно — на точность результата это уже не влияет. Поэтому прежде всего требуется определить точность предстоящего измерения. Вряд ли нужно измерять сумму наличных денег с точностью до рубля или затраты времени с точностью до минуты. Если требуются самые высокие гарантии и самая точная информация, выборка должна быть большой. Кроме точности и надежности результатов выборочного наблюдения, на объем выборки влияет независимый от исследователя фактор — степень однородности генеральной совокупности. В однородной совокупности не нужны многократно повторяющиеся замеры.

Представим три фактора, влияющие на объем выборки, в формальном виде. Греческая буква Δ обозначает заданную точность — предельную ошибку выборки; t — коэффициент, обозначающий заданную надежность предсказания генеральной средней, — обычно устанавливается вероятность 0,997, t = 3; степень однородности генеральной совокупности измеряется средним квадратическим отклонением σген.

Предельная ошибка выборки А = t x μ, а средняя ошибка выборки. Путем подстановки получаем формулу объема выборки.

Часто при измерении социологических признаков приходится оперировать долями. В этом случае формула видоизменяется. Средняя ошибка для выборочной доли равна  где w — доля данного признака. Тогда  Производим преобразование формулы и получаем.  Как и в случае с непрерывной переменной, остается неизвестной вариация генеральной совокупности. Выход из ситуации — максимизировать w(l - w). Максимальная вариация доли бывает при w = 0,5 и соответственно 1 - w = 0,5. Тогда w(1 - w) = 0,25. Это значение и подставляется в формулу.Б.Ц. Урланис приводит следующий пример27. Производится обследование студентов по полу. Предельная ошибка выборки (точность) устанавливается 2 процента (0,02). Надежность t = 3, т. е. в 997 случаях из 1000 генеральная средняя попадет в требуемый интервал. В итоге вычисляется объем выборки:

Исходя из возможноймаксимальной вариации признака в генеральной совокупности В.И. Паниотто рекомендует следующие объемы выборочной совокупности в зависимости от величины генеральной совокупности (при допущении, что с вероятностью 0,954 генеральная средняя попадает в интервал  — 5 %)28.

Таблица 5.15

Соотношение объемов выборочной и генеральной совокупностей при Р = 0,954 и ошибке 5%

Генеральная совокупность

Выборочная совокупность

500

222

1000

286

2000

333

3000

350

4000

360

5000

370

10 000

385

100 000

398

400

Таким образом, для выборки с пятипроцентной ошибкой достаточно обследовать 400 единиц при практически бесконечной генеральной совокупности и уровне надежности 95%. Повышение требований к точности предсказания до 4% при сохранении прочих условий увеличивает объем выборки до 625 единиц, точность 3% предполагает объем 1111 единиц, 2% — 2500 единиц и 1% — 10 000 единиц.

Фактически объем выборки зависит не столько от величины генеральной совокупности и допустимой ошибки, сколько от количества градаций, используемых при анализе массива.

Для часто используемых в социологии двумерных распределений основную роль играет значимость различий между долями изучаемого признака при сравнении двух совпадающих по численности групп респондентов, выбранных случайным образом из бесконечной генеральной совокупности. Например, различия в 10% не случайны с вероятностью 0,954, если сравниваются группы по 200 человек. Двухпроцентные различия не случайны с той же вероятностью при сравнении пятитысячных групп (табл. 5.16)29.

Таблица 5.16

Зависимость численности сравниваемых групп от значимости различий при Р=0,954, %

Численность сравниваемых групп

Значимые различия

50

20,0

100

14,0

150

11,5

200

10,0

300

8,0

500

6,3

1000

4,5

5000

2,0

Таким образом, увеличение выборочной совокупности необходимо лишь для статистически корректного анализа межгрупповых различий.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями