Нужна помощь в написании работы?

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гаплоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе - кариотипе.

Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом. Ниже приведены количества хромосом соматических клеток некоторых видов организмов.

 Если число хромосом в гаплоидном наборе половых клеток обозначить n, то общая формула кариотипа будет выглядеть как 2п, где значение n различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы).

Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов. Чаще различия касаются строения половых хромосом, обозначаемых разными буквами - X и Y (XX или XY).

Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,- генотип - это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

 Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза.

 Генетический груз включает, с одной стороны, патологические генные мутации, наследуемые от родителей и прародителей, и называемые серегационным грузом, если в виде болезни проявляются рецессивные или нелетальные доминантные мутации генов (от латинского segregatio - выщепление).

С другой стороны, определенную часть этого груза составляют новые, вновь возникшие генные мутации (в результате мутагенных влияний внешней среды). Они не прослеживаются в восходящих поколениях и составляют так называемый мутационный генетический груз.

Согласно данным Н.П.Дубинина, частота спонтанных генных мутаций установлена в пределах 10-10 на геном на поколение. В геноме человека имеется около 100000 генов. Расчеты показывают, что примерно у 10% людей возникают новые мутации, вызванные мутагенным воздействием факторов окружающей среды (радиационный фон Земли, действие продуктов сжигания топлива, влияния вирусов). Безусловно, частота мутаций будет значительно выше в условиях антропогенного загрязнения внешней среды. Каждый человек наследует, как минимум, 10 скрытых мутаций, опасных для здоровья.

 В целом по А. Кнудсону (1986), величина постнатального генетического груза составляет 0.2 т.е. у 20% членов популяции существует вероятность развития наследственных болезней (моногенных, полигенных или связанных с мутациями генов соматических клеток).

Генетический груз проявляется, как бесплодие и спонтанные аборты, выкидыши и мертворождения, врожденные пороки и умственная отсталость. Он определяет риск гемолитической болезни новорожденных, проявления несовместимости матери и плода по ряду антигенов.

 Реализация наследственной информации, заключенной в генотипе организма - это сложный процесс, который требует тонкой регуляции для того, чтобы в клетках разной тканевой принадлежности в определенное время в процессе развития организма обеспечить синтез специфических белков в необходимом количестве.

 Все клетки многоклеточного организма, возникая из зиготы путем митоза, получают полноценный набор генетической информации. Несмотря на это, они отличаются друг от друга по морфологии, биохимическим и функциональным свойствам. В основе этих различий лежит активное функционирование в разных клетках неодинаковых частей генома. Большая часть генома находится в клетках организма в неактивном, репрессированном, состоянии, и только 7-10% генов дерепрессированы, т.е. активно транскрибируются. Спектр функционирующих генов зависит от тканевой принадлежности клетки, от периода ее жизненного цикла и стадии индивидуального развития организма.

Основная масса генов, активно функционирующих в большинстве клеток организма на протяжении онтогенеза, - это гены, которые обеспечивают синтез белков общего назначения (белки рибосом, гистоны, тубулины и т.д.), тРНК и рРНК.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Фенотип - совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа.

Сюда относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды.

Определенная роль в эволюции геномов как прокореотических, так и эукариотических клеток принадлежит так называемым подвижным генетическим элементам - транспозонам. Они представляют собой автономные единицы, несущие в нуклеотидной последовательности информацию о структуре особых белков, которые обеспечивают их способность к перемещению из одного участка генома в другой. Такое перемещение - траспозиция - может происходить в строго определенные участки хромосом, узнаваемые этими специфическими белками. Транспозиция предполагает репликацию нуклеотидной последовательности подвижного генетического элемента и встраивание копии в ДНК с сохранением другой копии в прежнем месте.

 Установлена также способность подвижных генетических элементов к точному вырезанию и удалению их из хромосомы.

Перемещение таких нуклеотидных последовательностей в пределах генома может влиять на регуляцию экспрессии генов, которые прилежат к месту встраивания этих элементов. В результате таких перемещений могут активироваться ранее не активные гены, и наоборот.

 Обнаружение подвижных генетических элементов в геномах как про-, так и эукариот указывает на определенные эволюционные преимущества, связанные с их наличием в наследственном материале. Возможно, рекомбинационные процессы, обеспечиваемые подвижными генетическими элементами, имеют немаловажное значение в структурной эволюции генома.

          Наряду с транспозонами, не способными очевидно, существовать вне генома и образовывать свободные молекулы ДНК, описаны элементы, обнаруживаемые как в составе генома, так и вне его. Существование таких подвижных элементов дает возможность обсуждать роль горизонтального переноса генетического материала в эволюции генома.

 Если описанные выше изменения структуры генома передаются из поколения в поколение организмов одного и того же вида, т.е. по вертикали, то горизонтальный перенос генетической информации может происходить и между организмами разных видов, одновременно существующими на Земле. В настоящее время доказана возможность изменения наследственных свойств у бактерий путем введения в бактериальную клетку чужеродной ДНК при конъюгации или с помощью фагов. Оказывается, чужеродную ДНК можно ввести и в эукариотическую клетку, где она будет сохраняться как внехромосомный элемент или интегрироваться в геном и экспрессироваться.  Недавно получены данные, свидетельствующие о том, что гены могут переходить от одного эукариотического организма к другому и даже от эукариот к прокариотам, хотя это происходит крайне редко. Примером могут служить данные о несовпадении скоростей эволюции отдельных последовательностей генов гистонов у некоторых видов морских ежей. Это можно объяснить относительно поздним по сравнению с временем дивергенции этих видов горизонтальным переносом указанных последовательностей, проявляющих большее сходство, чем этого можно было ожидать.

Медицина преуспела в предупреждении и лечении генных заболеваний. Одно из видов, предупреждения развития у последующих поколений определенных генетических заболеваний переданных им от старших поколений, является: Медико-генетические консультации – один из видов специализированной медицинской помощи.

Суть, которой состоит в диагностике наследственных заболеваний,  в прогнозировании вероятности рождения больного ребёнка и помощи семье в принятии решения о деторождении.

Основные задачи медико-генетического консультирования включают:

1.  Установление точного диагноза наследственного заболевания;

2.  Определение типа наследования заболевания в данной семье;

3.  Расчёт риска повторения болезни в семье;

4.  Определение наиболее эффективного способа профилактики;

5. Объяснение обратившимся смысла собранной и проанализированной информации, медико-генетического прогноза и методов профилактики.

В медико-генетические консультации обращаются чаще всего молодые супруги, в родословной которых были случаи рождения детей с разными аномалиями. Врач-генетик на основе генеалогического метода попытается установить, является ли названное заболевание наследственным. Далее он определит тип наследования признака (если аномалия наследственна): аутосомно-доминантный, аутосомно-рецессивный, сцеплённый с полом; или характерный синдром при хромосомных изменениях в генотипе.

Затем врач рассчитает риск рождения ребёнка с аномалией. Степень риска рождения наследственно отягощённого ребёнка считается низкой от 0 до 5%, средней степени – до 12%, более 12% – высокой. При низкой степени риска врач рекомендует рождение ребёнка, при высокой – рекомендует воздержаться от деторождения.

При средней степени риска врач рекомендует женщине обратиться в медико-генетическую консультацию после наступления беременности для постановки диагноза плоду (метод пренатальной диагностики).

Методы ультрасонографии или ультразвукового скеннирования можно обнаружить у развивающегося плода нарушения анатомического строения органов и общих пропорций тела. Этим методом выявляют пороки развития опорно-двигательной системы.

Раннее выявление таких аномалий как: мозговая грыжа, гидроцеоралия даёт возможность произвести аборт по медицинским показаниям и предотвратить рождение явно неполноценного ребёнка.

Внутриутробная диагностика возможна так же и с использованием метода амниоцентеза. С помощью шприца из матки производят забор небольшого количества аминотической жидкости вместе с живыми клетками плода, которые всегда в ней присутствуют. После культивирования этих клеток на искусственных питательных средах в них можно изучить кариотип и выявлять хромосомные и геномные мутации, определять пол плода, что важно для прогноза в отношении сцеплённого с полом наследования. Если обнаружится тяжёлая патология, врач рекомендует искусственное прерывание беременности.

 

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями