Нужна помощь в написании работы?

  Этапы становления генетики развития.Становление феногенетики шло параллельно становлению биологии развития и может быть условно подразделено на несколько этапов. Первый этап — описательный. Он приходится на начало 20-х и отчасти на 30-е годы XX в. В течение 20-х-30-х годов был накоплен огромный материал в этой области, в особенности на млекопитающих — крысах, мышах, морских свинках. А норвежский цитолог и генетик К. Бонне-ви создала базу для развития современного учения о наследственных нарушениях онтогенеза у человека, и это дало возможность осмыслить данные по врожденным порокам развития у человека. 

Второй этап — экспериментальный. В 30–40 гг. удалось накопить богатый экспериментальный материал, проливающий свет на некоторые закономерности генетического контроля индивидуального развития. Именно в этот период были сформулированы основные принципы феногенетики:
1.       Принцип дифференциальной активности генов как основа гетероге-низации (регионализации) развивающегося организма. Дело в том, что вопрос о закономерностях функционирования генома встал очень рано. Еще А. Вейсман в конце XIX в. пытался построить стройную схему, с помощью которой удалось бы их объяснить. По Вейсману, возникающие в ходе развития организма различия между клетками обусловливаются сортировкой наследственных единиц (детерминантов). Эти единицы распределяются неравномерно по различным клеткам и детерминируют их специализацию. Только половые клетки имеют полный набор детерминантов, а потому оказываются способными развиваться в целый организм. Так родилась теория зародышевого пути, согласно которой уже в ходе первого деления дробления одни клетки, где сохраняется полный набор детерминантов, образуют зародышевый путь, другие клетки, где детерминанты специфически распределяются между различными соматическими клетками, образуют соматический путь.
          Обстоятельно изученное Т. Бовери в конце XIX в. развитие полового зачатка у аскариды гармонировало со взглядами Вейсмана. Бовери обнаружил, что диминуция (уменьшение количества) хроматина складывается из двух процессов — фрагментации хромосом и отбрасывания их концов. Процесс этот начинается со второго деления дробления и повторяется каждый раз, когда принадлежащая к половому пути клетка отделяет соматическую клетку. Таким образом, хромосомы зародышевых клеток Ascaris представляют собой комплексные образования, и часть хромосомного материала, входящего в их состав, не участвует в развитии соматических органов и тканей.
          Однако подобный способ разделения полового и соматического пути встречается очень редко, в большинстве случаев это разделение, хотя и регистрируется чрезвычайно рано в эмбриогенезе, но не сопровождается диминуцией хроматина. Тончайшая структура хромосом в соматических клетках, как правило, не претерпевает существенных изменений, и, следовательно, генотип всех клеток тела одинаков, так что говорить о неравнонаследственном их делении во время индивидуального развития организма нет оснований. И, следовательно, как справедливо отмечал Н. В. Тимофеев-Ресовский, основная проблема генетики развития, изучающей действие генов в онтогенезе, т. е. путь от гена к признаку, заключается в выяснении того, каким образом при идентичном наборе генов во всех клетках организма формируются клеточное разнообразие и морфофункциональная специализация тканей и органов. На этот счет, начиная с 20–30-х годов XX в., существует две «модели» (или гипотезы) объяснения феномена.
          Первая гипотеза была сформулирована Морганом, который полагал, что, несмотря на одинаковый набор генов, в клетках многоклеточного организма, расположенных в разных частях развивающегося зародыша, и в разные моменты их дифференцировки функционируют разные гены, потому-то они и приобретают сначала химическое, а затем и морфологическое своеобразие. Вторую гипотезу выдвинул Гольдшмидт. Он предположил, что во всех клетках одинаково работают все гены, но их продукты испытывают разную судьбу в разных частях зародыша. Именно там они подвергаются селективному отбору, так что наблюдается не дифференциальная активность генов в разных клетках, а дифференциальное функционирование их продуктов. Если перевести взгляды Моргана и Гольдшмидта на современный язык, то можно сказать, что Морган говорил о дифференциальной активности генов, или о транскрипционном уровне регуляции регионализации эмбрионов, а Гольдшмидт — о дифференциальной экспрессии генов, т. е. о трансляционном и посттрансляционном уровне регуляции процессов гетерогенизации развивающихся зародышей.
2.        Принцип ведущей роли ядерно-цитоплазматических отношений в регионализации зародыша. Этот принцип феногенетики был сформулирован в 30-е годы. Здесь представления Моргана и Гольдшмидта совпадали. Оба полагали, что за селективное проявление наследственной информации ответственна цитоплазма. По Моргану, в разных частях зародыша работают разные гены, потому что разные ядра попадают в разную цитоплазму, содержащую разные активирующие гены вещества. По Гольдшмидту, в разных частях зародыша функционируют разные генопродукты, потому что в их цитоплазме содержатся разные вещества, селективно способствующие или препятствующие функционированию этих генопродуктов.
          О том, что в разных частях яйца содержится разная цитоплазма, известно было давно. В частности, у многих насекомых на самых ранних стадиях развития на вегетативном полюсе яйца возникает своеобразная зернистая, богатая РНК плазма, которую называют полярной плазмой. Ядра, попавшие в эту область, дают начало половым клеткам. Если ее облучить ультрафиолетом, то половые клетки не развиваются, и животные остаются стерильными. Если полярную плазму инъецировать в какую-то другую область зародыша, то в ней, в необычном для себя месте дифференцируются половые клетки.
3.     Признание роли взаимодействия генов в процессе онтогенеза — третий принцип феногенетики. Эта роль была продемонстрирована многими исследователями, в том числе и из русской, кольцовской школы. Удалось выявить целый ряд феноменов, отражающих взаимодействие генов, в частности экспрессивность, пенетрантность и специфичность действия гена. Данные понятия были сформулированы немецким биологом Фохтом и российскими биологами Н. В. Тимофеевым-Ресовским и П. Ф. Рокицким.
•          Под экспрессивностью подразумевается степень проявления данного гена. Всем известен, например, ген пегости у животных, обусловливающий пегую окраску. Окраска эта варьирует. Если речь идет о пегих коровах, то легко встретить как целиком белых коров с редкими черными пятнами, так и полностью черных коров с редкими маленькими белыми пятнами; имеются и все промежуточные уровни окраски. Это и есть экспрессивность.
•         Пенетрантность — процент животных (или растений), у которых данная мутация проявляется. Например, мутация «белые глаза» (white) проявляется у дрозофилы в 100% случаев, и тогда говорят о 100%-й пенетрантности. В случае мутации vena transverse incompleta (radius incompletus, прерванная поперечная жилка крыла) у того же объекта пенетрантность может колебаться от 100%-й до 40–50%-й в зависимости от линии дрозофилы.
          Специфичность действия гена включает три явления: время активации гена, направленность его действия и поле действия.
          Время активации в ходе онтогенеза (временная специфичность действия гена) различно для разных генов и разных животных. Бывают как ранние гены, включающиеся уже в период дробления, так и поздние гены, транскрипция которых начинается относительно поздно, ближе ко времени формирования тканей и органов.
          Направленность действия гена (пространственная его специфичность) заключается в региональных особенностях его экспрессии, в тканевой специфике его транскрипционной активности. Интересны эффекты направленности действия гена в случае выше названной мутации radius incompletus. Можно отселекционировать линии дрозофилы, у которых перерыв может быть в верхней или в нижней части жилки либо в ее середине. Иными словами, направленность действия гена обнаруживает межлинейные различия.
Поле действия гена обозначает размер области, на которую распространяется его влияние. В случае мутации radius incompletus это будет размер дефекта (перерыва) соответствующей поперечной жилки.
          В чем же дело? Почему один и тот же ген характеризуется различной экспрессивностью, пенетрантностью, специфичностью действия? Ответ был найден путем анализа взаимодействия генов. Оказалось, что проявление действия каждого гена подвергается влиянию многочисленныхгенов-модификаторов, которые порой могут частично или полностью заблокировать его выражение в определенном признаке (низкая пенетрантность) или, наоборот, способствовать максимальному проявлению его эффекта (высокий уровень пенетрантности и экспрессивности). Русский генетик Б. Л. Астауров, ученик Н. К. Кольцова, выразился даже в том смысле, что все гены участвуют в формировании каждого признака, и каждый ген участвует в формировании всех признаков. Это, конечно, экстремистская точка зрения, но можно смело говорить об участии очень многих генов в реализации одного признака.
          Так родилось понятие о норме реакции. Это понятие обозначает пределы колеблемости, вариабельности того или иного генетически детерминированного признака. В этих пределах признак может изменяться под влиянием как генов-модификаторов (т. е. генотипической среды), так и внешних факторов, к которым данный признак чувствителен в ходе своего развития.
          Третий этап развития феногенетики — биохимический(40–60-е годы XX в.). Можно сказать, что он начался с открытия бельгийским ученым Ж. Браше и русским цитологом Б. Кедровским выдающейся роли нуклеиновых кислот в развитии. Стало ясным, что они имеют какое-то отношение к реализации наследственной информации, и в частности в синтезе белка, поскольку активному синтезу белков в клетке всегда предшествовало накопление рибонуклеиновой кислоты (РНК). В связи с открытием в 50-е годы роли дезоксирибонуклеиновой кислоты (ДНК) как материального носителя наследственности стало в основном понятным значение цепи ДНК-РНК-белок в процессе онтогенеза. Посредством сочетанияэкспериментально-эмбриологических и биохимических методов был продемонстрирован поток РНК и белка из ядра в цитоплазму и наоборот, а также показана обратимость дифференцировки ядер в ходе развития некоторых объектов. Поскольку нашли прямой продукт генов — рибонуклеиновую кислоту (РНК), удалось выявить реальность дифференциальной активности генов (т. е. дифференциальный синтез РНК) на разных стадиях развития и в разных тканях.
          Четвертый этап — молекулярно-генетический (примерно с 60-х годов до наших дней). Характеризуется проникновением в генетику развития методов молекулярной биологии и генной инженерии, а также формированием представлений о конкретных путях реализации наследственной информации. Стало возможным выделять отдельные гены и не только анализировать закономерности их экспрессии в развитии, но и выявлять регуляторные зоны ДНК, от которых зависят эти закономерности. Результатом таких исследований стало открытие генетических регуляторных систем, контролирующих экспрессию генов на разных уровнях, начиная от транскрипционного и кончая посттрансляционным, тканевым и организменным.
          Экспериментальные работы в области генетики развития проводятся в настоящее время по определенному плану:

• выявление разнообразия по данному признаку;
• доказательство генетической регуляции этого разнообразия (оно может быть вызвано не генетическими, но средовыми влияниями);
• локализация соответствующего гена (генов);
• выделение и клонирование гена, его секвенирование и «вычисление» продукта;
• анализ экспрессии гена в развитии;
• выявление регуляторных зон, контролирующих экспрессию, путем получения трансгенных животных, в геном которых введен соответствующий ген с прилежащими участками ДНК разной длины;
• молекулярно-генетический анализ взаимодействия данного гена и его продуктов с другими генами и их продуктами.
          В настоящее время мы вступаем в пятый период развития фено-генетики, в ходе которого, возможно, будет решен основной вопрос этой науки, поставленный еще Т. Морганом: каким образом молекулярно-генетические события в ходе онтогенеза детерминируют формообразовательные процессы? Как из молекулярных изменений складываются изменения морфогенетические? .

         

Поделись с друзьями