Нужна помощь в написании работы?

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» .

Суперсимме́трия - гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.

По состоянию на начало 2009 года суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами (за исключением спина). Данное требование не выполняется для известных в природе частиц. Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет. В таком случае частицы-суперпартнёры обычных частиц оказываются очень тяжёлыми по сравнению с обычными частицами. Поиск суперпартнёров обычных частиц - одна из основных задач современной физики высоких энергий. Ожидается, что БАК сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные теории, если ничего не будет обнаружено.

Впервые суперсимметрию предложили в 1973 году австрийский физик Юлиус Весс и итальянский физик Бруно Зумино для описания ядерных частиц. Математический аппарат теории был открыт ещё раньше, в конце 1960-х годов, советскими физиками Ю. А. Гольфандом и Е. П. Лихтманом. Суперсимметрия впервые возникла в контексте версии теории струн, которую предложили Пьер Рамон, Джон Шварц и Андре Невё, однако алгебра суперсимметрии позднее стала успешно использоваться и в других областях физики.

Основная физическая модель современной физики высоких энергий — Стандартная модель — не является суперсимметричной, но может быть расширена до суперсимметричной теории. Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» (МССМ). В МССМ необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для векторных бозонных полей — глюонов, фотонов, W- Z-бозонов — вводятся фермионные поля глюино, фотино, зино и ви́но, также по два на каждую степень свободы Стандартной модели. Для нарушения электрослабой симметрии в МССМ нужно ввести 2 хиггсовских дуплета (в обычной Стандартной модели вводится один хиггсовский дуплет), то есть в МССМ возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса (2 степени свободы), лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса.

В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов. В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии:

ü    Нарушение суперсимметрии, основанное на взаимодействии с гравитацией;

ü    Нарушение за счёт взаимодействия с дополнительными калибровочными полями (с зарядами по группе Стандартной модели);

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

ü    Нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий.

 

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями