Нужна помощь в написании работы?

Ускоритель - это установка для разгона пучков элементарных частиц; коллайдер - это такой тип ускорителя, в котором разгоняются два пучка частиц в противоположных направлениях и сталкиваются друг с другом. В русскоязычной терминологии коллайдер называют также ускорителем на встречных пучках.

С точки зрения научной задачи сам ускоритель выполняет только полдела - он лишь сталкивает частицы. Изучением результатов столкновения занимаются детекторы элементарных частиц - специальные многослойные установки, собранные вокруг точек столкновения. Иногда ускорителем называют тандем «ускоритель + детекторы»; в этом случае, если надо подчеркнуть, что речь идет именно об ускорителе, а не о детекторах, часто говорят «ускорительное кольцо».

Общий вид.

 БАК - циклический (то есть кольцевой) коллайдер; пучки протонов или ядер свинца циркулируют в нём непрерывно, совершая свыше 10 тысяч оборотов в секунду и сталкиваясь на каждом круге со встречным пучком.

Всё кольцо БАК поделено на восемь секторов, границы которых отмечены точками от 1 до 8. На каждом участке (1–2, 2–3 и т. д.) стоят в ряд магниты, управляющие протонным пучком. Благодаря магнитному полю поворотных магнитов сгустки протонов не улетают прочь по касательной, а постоянно поворачиваются, оставаясь внутри ускорительного кольца. Эти магниты формируют орбиту, вдоль которой движутся протоны. Кроме того, специальные фокусирующие магниты сдерживают поперечные колебания протонов относительно «идеальной» орбиты, не давая им задевать стенки довольно узкой (диаметром несколько сантиметров) вакуумной трубы.

Внутри ускорителя идут рядом друг с другом две вакуумные трубы, по которым циркулируют два встречных протонных пучка, каждый в своем направлении. Эти две трубы объединяются в одну только в специально выделенных местах — в точках 1, 2, 5, 8. В этих точках происходят столкновения встречных протонных пучков, и именно вокруг них построены четыре основных детектора: два крупных — ATLAS и CMS, и два средних — ALICE и LHCb.

В точке 4 расположена ускорительная секция. Именно здесь протонные пучки при разгоне получают с каждым оборотом дополнительную энергию. В точке 6 находится система сброса пучка. Здесь установлены быстрые магниты, которые в случае необходимости уводят пучки по специальному каналу прочь от ускорителя. В точках 3 и 7 установлены системы чистки пучка; кроме того, эти места зарезервированы для возможных будущих экспериментов.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Протонные пучки попадают в БАК из предварительного ускорителя SPS. Линии передачи пучка (Tl2 и Tl8), соединяющие два этих кольцевых ускорителя вместе со специальными магнитами на каждом из них, составляют вместе инжекционный комплекс коллайдера БАК (от слова «инжекция» — впрыскивание пучка). Поскольку на SPS пучок крутится только в одну сторону, инжекционный комплекс состоит из двух линий и имеет несимметричный вид. В ускорительное кольцо SPS протоны попадают из источника через цепочку еще меньших ускорителей.

Магнитная система БАК.

Как и любое тело, сгусток элементарных частиц, предоставленный сам себе, будет двигаться прямолинейно и равномерно. Поэтому для того, чтобы удерживать его внутри ускорительного кольца, требуется постоянно воздействовать на пучок.

Удобнее всего это делать с помощью магнитного поля. Электрически заряженные частицы, пролетая сквозь область магнитного поля, поворачиваются в плоскости, перпендикулярной полю. Угол поворота зависит от силы поля и от импульса частиц. Благодаря этому можно конструировать магниты, которые будут выполнять самые разные задачи по управлению пучком: поворачивать, фокусировать или корректировать его орбиту.

1)   Поворотные магниты.

Поворотные магниты - это мощные электромагниты, стоящие вдоль всего ускорительного кольца и направляющие протонные пучки по узкой вакуумной трубе. Внутри трубы они создают магнитное поле перпендикулярно плоскости ускорительного кольца и с его помощью поворачивают пролетающие мимо протоны на небольшой угол.

Поворотные магниты создавались для БАК по уникальной технологии. Во-первых, из-за того, что надо поворачивать два встречных пучка протонов, пришлось делать не один, а два магнита с противоположными полярностями под единой оболочкой. Во-вторых, для того, чтобы минимизировать соединения между магнитами, их сделали очень длинными — длиной почти 15 метров. Подчеркнем, что провода наматывались вовсе не вокруг вакуумной трубы, а вдоль нее — именно так можно создать магнитное поле, перпендикулярное плоскости кольца.

Всего на БАК установлено 1232 таких магнитов. Это сверхпроводящие магниты, сделанные из низкотемпературного сверхпроводника ниобий–титан и рассчитанные на работу при температуре 1,9 К. Каждый из них может держать до 11 кА тока и создавать магнитное поле с индукцией 8,3 Тл — в сотню тысяч раз больше, чем магнитное поле Земли. Полная энергия, запасенная в одном магните, составляет примерно 10 МДж. Ниобий-титановые кабели состоят из множества тончайших волокон, в 10 раз тоньше человеческого волоса; полная длина всех волокон, созданных для БАК, превышает расстояние от Земли до Солнца. В течение нескольких лет на создание волокон для БАК уходило свыше четверти всего производимого в мире ниобий-титанового сплава.

К поворотным магнитам предъявляются очень строгие требования:

ü     Они должны создавать очень сильное магнитное поле: чем сильнее магнитное поле, чем более высокоэнергетические протоны можно удержать внутри кольца заданного радиуса. Сверхпроводящие дипольные магниты, использующиеся на БАК, создают магнитное поле вплоть до 8,2 тесла. Именно это число и определяет максимальную энергию протонов на БАК — 7 ТэВ.

ü     Магнитное поле должно быть очень однородным по всему сечению вакуумной трубы, иначе чуть отклонившиеся протоны уже начнут заворачиваться по слегка иному радиусу и «не впишутся» в вакуумную трубу (радиус вакуумной трубы составляет всего 5 см, а радиус кольца — 4 км!).

ü     Как и во всяком синхротроне, сила магнитного поля должна плавно подстраиваться под энергию протонов. Поэтому она должна быть легко управляема.

Из-за того что используются сверхпроводящие электромагниты, необходимо принять меры безопасности, связанные с переходом из сверхпроводящего состояния в нормальное. В сверхпроводящем состоянии сильный ток циркулирует в обмотках электромагнита без затухания и не нагревает его. Однако если какой-то участок обмотки слегка нагрелся, например из-за попадания пучка протонов, то он перейдет в нормальное состояние, обретет ненулевое сопротивление, и на нём начнет выделяться тепло, которое быстро разрушит магнит.

Чтобы этого избежать, дипольные магниты спроектированы таким образом, что, как только начинается локальное выделение тепла, сразу по всему магниту включаются «нагреватели», которые быстро переводят весь магнит целиком в нормальное состояние. В этом случае вся запасенная в магните энергия (7 мегаджоулей) выделяется не локально в магните, а сбрасывается на специальном демпфирующем резисторе и не приводит к каким-либо разрушениям. Этот процесс называется «гашением тока» (по-английски — «quench»); все магниты, установленные в БАК, проверялись на безопасное гашения тока. Авария, случившаяся на БАК 19 сентября 2008 года, при которой около 100 магнитов безопасно перешли в нормальное состояния с гашением тока, невольно послужила хорошей проверкой этой системы.

2)   Фокусирующие  магниты.

Поскольку пучки состоят из положительно заряженных протонов, они стремятся разойтись в стороны из-за электрического отталкивания между протонами. Чтобы это предотвратить, пучки требуется фокусировать. Отчасти эту задачу выполняют поворотные магниты: в них поле устроено так, чтобы частицы, отклонившиеся от оптимальной траектории, возвращались к ней.

Однако перед точками столкновений очень важно сфокусировать пучки как можно лучше. Чем меньше поперечный «размер фокуса», тем больше вероятность столкновений протонов друг с другом, а значит, тем выше светимость ускорителя. Уменьшение поперечного размера пятна в 2 раза приводит к увеличению светимости в 16 раз (то есть один и тот же эксперимент можно вместо одного года провести за пару недель).

Эта фокусировка пучков перед точками столкновений осуществляется «магнитными линзами» - фокусирующими квадрупольными магнитами. Эти магниты длиной свыше трех метров создают внутри вакуумной трубы перепад магнитного поля 223 Тл/м. У квадрупольного магнита есть важное отличие от обычной оптической линзы - он может фокусировать пучок в вертикальной плоскости, дефокусируя его в горизонтальной, или наоборот. Поэтому для того, чтобы сфокусировать пучок в обоих направлениях, требуется использовать комбинацию из нескольких квадрупольных магнитов разного действия.

3)   Магниты специального назначения.

В месте инжекции протонов в кольцо БАК, а также в точке сброса пучка стоят специальные магниты - кикеры (англ. «kickers») и септумы (англ. «septa», мн. ч. от «septum»). В ходе нормальной работы БАК эти магниты выключены, а включаются они только в тот момент, когда очередной сгусток протонов «впрыскивается» в БАК из предварительного ускорителя или когда пучок выводится из ускорителя.

Главная особенность этих магнитов в том, что они включаются очень быстро, примерно за 3 мкс - это намного меньше, чем время полного оборота пучка по БАК. Если, скажем, система слежения за пучком обнаружила, что он вышел из-под контроля и начинает задевать аппаратуру, то эти магниты включаются в точке 6 и быстро выводят пучок из ускорителя.

Инжекционный комплекс.

 

Протоны поступают в БАК из предварительного ускорителя SPS («Протонного суперсинхротрона»). Имеются две линии передачи пучка, которые отходят от SPS в двух местах и подходят к ускорительному кольцу БАК вблизи точек 2 и 8 (эти линии называются Tl2 и Tl8).

Инжекционный комплекс - это сложное инженерное сооружение, работоспособность которого зависит не только от правильной настройки магнитной системы, но и от точной синхронизации ритма работы SPS и БАК.

Инжекция (то есть «впрыскивание») протонов в БАК происходит не непрерывно, а импульсами. Во время работы БАК линии передачи пустуют, а в предварительном ускорителе SPS накапливается очередная порция протонов. В конце каждого цикла работы БАК высокоэнергетический пучок сбрасывается, и коллайдер подготавливается к приему новой порции протонов. В течение нескольких минут следует серия импульсных включений и выключений быстрых магнитов на концах линии передачи протонов, в ходе которых протонные сгустки переводятся из SPS в БАК и один за другим выстраиваются на свои «позиции» в пучке, не мешая уже циркулирующим сгусткам.

 

 Ускорительная секция.

 Протоны впрыскиваются в БАК на энергии 0,45 ТэВ и ускоряются до 7 ТэВ уже внутри основного ускорительного кольца. Этот разгон происходит во время пролета протонов сквозь несколько резонаторов, установленных в точке 4. Резонатор представляет собой полую металлическую камеру сложной формы, внутри которой возбуждается стоячая электромагнитная волна с частотой колебаний примерно 400 МГц. Эффективное и однородное ускорение всего пучка переменным полем оказывается возможным благодаря тому, что весь пучок разбит на отдельные сгустки, следующие на строго определенном расстоянии друг за другом. Когда сгусток протонов пролетает сквозь резонатор, электромагнитное колебание находится как раз в такой фазе, чтобы электрическое поле вдоль оси пучка подталкивало протоны вперед.

Фаза колебания поля в резонаторе настроена так, что в момент пролета частиц электрическое поле не максимально, а нарастает. Так делается для того, чтобы автоматически выравнивать энергию ускоряемых частиц. Если какой-то протон случайно оказался более энергичным, чем соседи, он вырывается вперед и на следующем круге приходит в ускоряющую камеру с небольшим опережением. Из-за этого он получает чуть меньше добавочной энергии, чем остальные протоны. И наоборот, если протон случайно потерял немного энергии и оказался в хвосте своего сгустка, то при следующем пролете через ускорительную секцию он получил побольше энергии. Это свойство сгустка частиц называется автофазировкой.

Ускорение протонов с энергии инжекции 0,45 ТэВ до 7 ТэВ происходит довольно медленно, примерно за 20 минут. Скорость этого процесса ограничена вовсе не мощностью ускорительной секции, а скоростью усиления магнитного поля в поворотных магнитах - ведь оно должно расти синхронно с энергией частиц для того, чтобы удерживать их в вакуумной трубе неизменного радиуса.

Колебания электромагнитного поля в резонаторе порождают сильные токи, текущие по поверхности камеры. Для того чтобы избежать тепловых потерь энергии, резонаторы на БАК тоже работают в сверхпроводящем состоянии при температуре 4,5 К (–268,7°C). Впрочем, внутренняя поверхность резонатора не идеальна и неизбежно содержит маленькие дефекты, на которых выделяется тепло. Но поскольку резонаторы сделаны из меди, это тепло быстро отводится.

Вакуумная и криогенная техника,  система контроля и безопасности.

 Для того чтобы протонные пучки могли свободно циркулировать в БАК, внутри ускорительной трубы создан сверхглубокий вакуум. Давление остаточных газов составляет порядка 10–13 атм. Однако даже при таком низком давлении время от времени происходит столкновение протонов с молекулами остаточного газа, что сокращает время «жизни пучка» до нескольких дней.

Несмотря на то что вакуумная труба небольшая, радиусом примерно 5 см, она очень длинная, так что полный объем, подлежащий вакуумированию, сопоставим с крупным зданием. Кроме того, из-за многочисленных контактов и соединений, а также из-за большой площади внутренней поверхности вакуумной камеры задача по поддержанию нужного вакуума оказывается очень непростой.

Еще одной важной частью инфраструктуры ускорителя является криогенная система, охлаждающая ускорительное кольцо. Она поддерживает в поворотных магнитах (а также в некоторых других элементах) температуру 1,9 К (то есть -271,25°C), при которой сверхпроводник безопасно держит нужный ток и создает требуемое магнитное поле. Для поддержания рабочей температуры ускорителя используется уникально высокая теплопроводность сверхтекучего гелия. По гелиевому каналу на БАК можно передавать киловатты теплового потока при перепаде температур всего 0,1 К на расстоянии в километр!

Криогенная система на БАК многоступенчатая. Для охлаждения используется 12 миллионов литров жидкого азота и почти миллион литров жидкого гелия. БАК в ходе работы потребляет 2-3 грузовика жидкого азота и порядка 500 литров жидкого гелия в день.

В точках 3 и 7 расположены устройства для «чистки» пучка. Когда протонный пучок движется внутри вакуумной трубы, то протоны колеблются в поперечной плоскости, и некоторые из них могут отклониться от идеальной траектории довольно далеко. Такие «блуждающие» протоны (на языке физиков - «гало пучка») могут задеть стенки вакуумной трубы или аппаратуру. Даже если это будет ничтожная доля от всего протонного пучка, они могут локально нагреть или даже повредить аппаратуру. Например, локальное энерговыделение всего в несколько сотых долей джоуля на кубический сантиметр способно вызвать переход поворотного магнита из сверхпроводящего в нормальное состояние, что приведет к срочному сбросу пучка.

Система чистки пучка механическим образом отсекает гало пучка. Для этого в непосредственную близость к пучку (на расстояние всего пару миллиметров) придвигаются массивные блоки - «челюсти» коллиматора. Они поглощают «блуждающие» протоны, но не мешают основной части пучка. Впрочем, «отсеченные» протоны тоже небезопасны - они сильно нагревают материал коллиматора, а также порождают на нём поток частиц более низкой энергии («вторичное гало»), которое тоже приходится отсекать вторичными коллиматорами.

 

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями