Нужна помощь в написании работы?

Структура и состав атмосферы.

Атмосфера — газовая оболочка земли. Ее масса около 5,9∙1015 т. Она имеет слоистое строение и состоит из нескольких сфер, между которыми располагаются переходные слои — паузы. В сферах изменяется количество воздуха и температура.

Наиболее плотный слой воздуха, прилегающий к земной поверхности, носит название тропосферы. Протяженность ее по высоте в средних широтах составляет 10-12 км над уровнем моря, на полюсах - 7-10, над экватором - 16-18 км. В тропосфере сосредоточено более 4/5 массы земной атмосферы. Из-за неравномерности нагрева земной поверхности в ней образуются мощные вертикальные токи воздуха, отмечаются неустойчивость температуры, относительной влажности, давления и т. д. Температура воздуха в тропосфере по высоте уменьшается на 0,6° на каждые 100 м и колеблется от 40 до -50°С.

Выше тропосферы находится стратосфера. Между ними расположена тро-попауза. Стратосфера имеет протяженность около 40 км. Воздух в ней разрежен, влажность невысокая. Температура воздуха от границы тропосферы до высоты 30 км постоянная (около -50°С), а затем начинает повышаться и на высоте 50 км дости-гает 10°С. В стратосфере под воздействием космического излучения и коротковол-новой части ультрафиолетового излучения Солнца молекулы воздуха ионизируются, в результате чего образуется озон. Озоновый слой находится на высоте 25–40 км.

Стратопауза отделяет стратосферу от лежащей выше мезосферы. Выше мезосферы расположена термосфера (или ионосфера), между которыми имеется мезопауза. Для термосферы характерно непрерывное повышение температуры с увеличением высоты. На высоте 200 км - 500°С, а на высоте 500–600 км превышает 1500°С. В термосфере газы очень разрежены. Молекулы их движутся с большой скоростью, но редко сталкиваются между собой и поэтому не могут вызвать даже небольшого нагревания находящегося здесь тела.

Под действием солнечного излечения в атмосфере протекает множество реакций, в которых участвуют кислород, озон, азот, оксид азота, пары воды, диоксид углерода. Ионизация происходит в основном на высоте 70-80 км. При этом отмечаются отрицательные и положительные ионы.

Атмосфера состоит в основном из кислорода и азота. На высоте 110–120 км кислород почти весь становится атомарным.  Предполагается,  что выше 400–500 км и азот находится в атомарном состоянии. Кислородно-азотный состав сохраняется примерно до высоты 400–600 км.



Выше 600 км в атмосфере начинает преобладать гелий. Гелиевая корона Земли простирается примерно до высоты 1600 км, а выше 2000–3000 км преобладает водород.

Структура атмосферы и изменение температуры по высоте представлены на следующем рисунке. В экологии принято обычно рассматривать два нижних слоя: тропосферу и стратосферу. Кроме того существует понятие "приземного слоя" атмосферы высотой 2 м над поверхностью суши.

Атмосфера является основной составляющей биосферы, подверженной техническому воздействию. Из атмосферы загрязнение переходит на литосферу, на водную поверхность и на биоту.

Для характеристики состава атмосферы и её загрязнения используется понятие концентрации "С" (мг/м3 или % об).

Чистый естественный воздух имеет следующий состав (в % об): азот 78,8 %; кислород 20,95 %; аргон 0,93 %; СО2  0,03 %; прочие газы 0,01 %. Считается, что такому составу должен соответствовать воздух на высоте 1 м над поверхностью океана вдали от берегов.

Классификация источников загрязнения атмосферы.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Как и для всех других составляющих биосферы, для атмосферы существуют два главных источника загрязнения: естественный и антропогенный (искусственный).  Вся классификация источников загрязнения может быть представлена по вышеприведенной структурной схеме.

Промышленность, транспорт, энергетика – основные источники загрязнения воздушного бассейна. По характеру воздействия на биосферу загрязнители атмосферы можно разделить на 3 группы:

1.    Влияющие на глобальное потепление климата.

2.    Разрушающие биоту.

3.    Разрушающие озоновый слой.

Краткие характеристики некоторых загрязнителей атмосферы.

К загрязнителям первой группы следует отнести СО2, закись азота, метан, фреоны. В создание "парникового эффекта" главный вклад вносит углекислый газ, концентрация которого ежегодно возрастает на 0,4%. По сравнению с серединой XIX века содержание СО2 возросло на 25%, закиси азота на 19%.

Фреоны — химические соединения, несвойственные атмосфере, используемые в качестве хладагентов — повинны на 25% в создании парникового эффекта в 80-е годы. Расчеты показывают, что несмотря на Монреальское соглашение 1987 г. об ограничении использования фреонов, к 2040 г. концентрация основных фреонов существенно возрастет (хлорфторуглерода 11 на 77%, хлорфторуглерода 12 на 66%), что приведет к усилению парникового эффекта на 20%. Возрастание содержания метана в атмосфере произошло незначительно, однако удельный вклад этого газа примерно в 25 раз выше, чем углекислого газа. Если не прекратить поступление в атмосферу "парниковых" газов, среднегодовые температуры на Земле к концу XXI века поднимутся в среднем на 2,5¸5°С. Необходимо: сократить сжигание углеводородного топлива и сведение лесов. Последнее опасно, кроме того, что приведет к увеличению углерода в атмосфере, также вызовет снижение ассимилирующей способности биосферы. (В последнее десятилетие ХХ века ежегодно недопоглощено СО2 из атмосферы 1 млрд. т.) Ожидается, что к 2010 году прирост выбросов углерода в атмосферу за 20 лет составит 50¸70.

К загрязнителям второй группы следует отнести двуокись серы, взвешенные твердые частицы, озон, окись углерода, окись азота, углеводороды.

Из этих веществ в газообразном состоянии наибольший ущерб биосфере наносят двуокись серы и окислы азота, которые в процессе химических реакций преобразуются в мелкие кристаллы солей серной и азотной кислоты. Наиболее острой является проблема загрязнения атмосферы серосодержащими веществами. Диоксид серы оказывает вредное действие на растения. Поступая внутрь листа при дыхании, SO2 угнетает жизнедеятельность клеток. При этом листья растений сначала покрываются бурыми пятнами, а потом засыхают.

Диоксид серы и другие ее соединения раздражают слизистую оболочку глаз и дыхательные пути. Продолжительное действие малых концентраций SO2 ведет к возникновению хронического гастрита, гепатопатии, бронхита, ларингита и других болезней. Есть сведения о связи между содержанием SO2 в воздухе и уровнем смертности от рака легких.

В атмосфере SO2 окисляется до SO3. Окисление происходит каталитически под воздействием следов металлов, главным образом марганца. Кроме того, газообразный и растворенный в воде SO2 может окисляться озоном или пероксидом водорода. Соединяясь с водой, SO3 образует серную кислоту, которая с металлами, имеющимися в атмосфере, образует сульфаты. Биологическое действие кислых сульфатов при равенстве концентраций более выражено по сравнению с SO2.

Диоксид серы существует в атмосфере от нескольких часов до нескольких дней в зависимости от влажности и других условий.

Вообще аэрозоли солей и кислот проникают в чувствительные ткани легких, опустошают леса и озера, снижают урожай, разрушают постройки, архитектурные и археологические памятники. Взвешенные твердые частицы представляют опасность для здоровья населения, превосходящую опасность кислотных аэрозолей. В основном это опасность больших городов. Особенно вредные твердые вещества содержатся в выхлопных газах дизелей и двухтактных бензиновых двигателей. Большинство твердых частиц в воздухе промышленного происхождения в развитых странах успешно улавливаются всевозможными техническими средствами, основные из которых будут рассмотрены далее.

Озон в приземном слое появляется в результате взаимодействия углеводородов, образующихся при неполном сгорании топлива в автомобильных двигателях и выделяющихся при многих производственных процессах, с окислами азота. Это один из наиболее опасных загрязнителей, поражающих органы дыхания. Он наиболее интенсивен в жаркую погоду.

Окись углерода, окислы азота и углеводороды в основном поступают в атмосферу с выхлопными газами автомобилей. Все перечисленные химические соединения оказывают разрушительное действие на экосистемы при концентрациях даже более низких, чем допустимые для человека: закисляют водные бассейны, убивая в них живые организмы, губят леса, снижают урожаи сельскохозяйственных культур (особенно опасен озон). Исследования в США показали, что современные концентрации озона снижают урожай сорго и кукурузы на 1%, хлопка и соевых бобов — на 7%, люцерны — более чем на 30%.

Из загрязнителей разрушающих стратосферный озоновый слой следует отметить фреоны, азотные соединения, выхлопы сверхзвуковых самолетов и ракет.

Количество озона в атмосфере невелико (2∙10-6% по объему), но он играет важную роль в предохранении земной поверхности от ультрафиолетовой части солнечного спектра. Разрушение озонового слоя происходит в результате окисления озоном различных веществ, в том числе продуктов сгорания топлива самолетов и ракет. Это грозит увеличением дозы ультрафиолетового излучения, достигающего земной поверхности. По некоторым данным, разрушение озонового слоя на 50% повлечет за собой увеличение дозы ультрафиолетового облучения в 10 раз.

Процесс истощения озонового слоя наблюдается с начала 70-х гг. и в последнее время получил название возникновения озоновых дыр. Если сконцентрировать весь озон в условном сплошном слое, то его толщина не превысит 3 мм. Содержание озона максимально в приполярных областях, минимально - вблизи экватора.

Исследование причин сокращения содержания озона в атмосфере показало, что главная из них - высокая концентрация в атмосфере монооксида хлора, причем наблюдается четкая корреляция между содержанием монооксида хлора и снижением содержания кислорода.

Основным источником хлора в атмосфере считаются фреоны — фторхлороуглеводороды, широко используемые в качестве холодильных агентов. Они используются не только в холодильных установках, но и в многочисленных бытовых аэрозольных баллонах с красками, лаками, инсектицидами. Молекулы фреонов отличаются стойкостью и способны практически без изменений переноситься с атмосферными массами на огромные расстояния. На высотах 15–25 км (зона максимального содержания озона) они подвергаются воздействию ультрафиолетовых лучей и распадаются с образованием атомарного хлора.

Установлено, что за последнее десятилетие потери озонового слоя составили 12–15% в полярных и 4–8% в средних широтах. В 1992 году были установлены ошеломляющие результаты: на широте Москвы обнаружены участки с потерей озонового слоя до 45%. Уже сейчас по причине усиления ультрафиолетовой инсоляции наблюдается снижение урожаев в Австралии и Новой Зеландии, увеличение заболеваний раком кожи.

Техногенные вещества биосферы, оказывающие вредное воздействие на биоту классифицируются следующим образом (приводится общая классификация, справедливая не только для газообразных веществ).

По степени опасности все вредные вещества разделены на четыре класса:

I   – чрезвычайно опасные вещества;

II  – высоко опасные вещества;

III – умеренно опасные вещества;

IV – малоопасные вещества — см. таблицу.

Для того, чтобы отнести вещество к тому или иному классу опасности надо воспользоваться данными следующей таблицы.

Классификация вредных веществ

Показатель

Норма для класса опасности

I

II

III

IV

а) Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м3

менее 0,1

0,1¸1,0

1,1¸10

более 10

б) Средняя смертельная доза при введении в желудок (ССДЖ), мг/кг

менее 15

15¸150

151¸5000

более 5000

в) Средняя смертельная доза при нанесении на кожу (ССДК), мг/кг

менее 100

100¸500

501¸2500

более 2500

г) Средняя смертельная концентрация в воздухе (ССКВ), мг/м3

менее 500

500¸5000

5001¸50000

более 50000

д) Коэффициент возможности ингаляционного отравления (КВИО)

более 300

300¸30

29¸3

менее 3

е) зона острого действия (ЗОД)

менее 6

6¸18

18¸54

более 54

ж) зона хронического действия (ЗХД)

более 10,0

10,0¸5,0

4,9¸2,5

менее 2,5

Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности.

Здесь: а) — концентрация, которая при ежедневной (кроме выходных дней) работе в течении 8 ч, или другой продолжительности, но не более 41 ч в неделю, в течении всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений;

б) — доза вещества, вызывающая гибель 50% животных при однократном введении в желудок;

в) — доза вещества, вызывающая гибель 50% животных при однократном нанесении на кожу;

г) — концентрация вещества в воздухе, вызывающая гибель 50% животных при двух–четырех часовом ингаляционном воздействии;

д) — отношение максимально допустимой концентрации вредного вещества в воздухе при 20°С к средней смертельной концентрации для мышей;

е) — отношение средней смертельной концентрации вредного вещества к минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций;

ж) — Отношение минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций, к минимальной (пороговой) концентрации, вызывающей вредное действие в хроническом эксперименте по 4 ч, 5 раз в неделю на протяжении не менее 4-х месяцев.

Опасность загрязняющих атмосферу веществ для здоровья человека, зависит не только от их содержания в воздухе, но и от класса опасности. Для сравнительной оценки атмосферы городов, районов с учетом класса опасности загрязняющих веществ используется индекс загрязнения атмосферы. Степень загрязнения атмосферы одним веществом выражается через единичный индекс загрязненности (Ji).

, где Cic — средняя концентрация i-го вещества в атмосфере (на основе регистрации наблюдений);

ПДКi — среднесуточная предельно допустимая концентрация i-го вещества;

Ki — безразмерная константа приведения степени вредности i-го вещества к вредности сернистого газа.

Значение константы Ki в зависимости от класса опасности вещества принимаются из таблицы.

Класс опасности

Ki

I

1,7

II

1,3

III

1,0

IV

0,9

Загрязнения атмосферы несколькими веществами оценивается комплексным индексом (суммарным) (J):

, где m — число вредных веществ, учитываемых при оценке загрязнения атмосферы.

Единичный и комплексный индексы загрязнения атмосферы могут рассчитываться для разных временных интервалов — за месяц, год. При этом в расчетах используются среднемесячная и среднегодовая концентрация загрязняющих веществ.

Для тех загрязняющих веществ, для которых не установлены ПДК, устанавливается ориентировочно безопасные уровни воздействия (ОБУВ). Как правило, это объясняется тем, что не накоплен опыт их применения, достаточный для суждения об отдаленных последствиях воздействия их на население. Если в технологических процессах выделяется и поступает в воздушную среду вещества, на которые нет утвержденных ПДК или ОБУВ, предприятия обязаны обращаться в территориальные органы Минприроды для установления временных нормативов. Кроме того, для некоторых веществ, загрязняющих воздух от случая к случаю, установлены только разовые ПДК (например, для формалина).

Для некоторых тяжелых металлов нормируются не только среднесуточное содержание в атмосферном воздухе (ПДКсс), но и предельно допустимая концентрация при разовых замерах (ПДКрз) в воздухе рабочей зоны (например, для свинца —ПДКсс=0,0003 мг/м3, а ПДКрз=0,01 мг/м3 ).

Нормируются также допустимые концентрации пылей и пестицидов в атмосферном воздухе. Так, для пылей, содержащих диоксид кремния, ПДК зависит от содержания в ней свободной SiO2 при изменении содержания SiO2 от 70% до 10% ПДК меняется от 1 мг/м3 до 4,0 мг/м3.

Некоторые вещества обладают однонаправленным вредным воздействием, которое называется эффектом суммации (например, ацетон, акролеин, фталевый ангидрид —1 группа).

Для каждой группы этих веществ используются понятия приведенной концентрации (С'пр ), т.е. концентрация всех веществ приводится к значению концентрации одного из них (С1):

 мг/м3, где С2...Сn — концентрации веществ, приводимые к концентрации вещества С1;

ПДК1...ПДКn — предельно допустимые концентрации веществ, входящих в одну группу с эффектом суммации.

Иногда для веществ, обладающих эффектом суммации, используется другая нормативная характеристика  — безразмерная (относительная) суммарная концентрация — q:

.

Эта величина (закон Ле Шателье) должна быть меньше или в крайнем случае равна 1 (q≤1).

Антропогенные загрязнения атмосферы можно характеризовать по длительности присутствия в атмосфере, по скорости возрастания их содержания, по масштабу влияния, по характеру влияния.

Длительность присутствия одних и тех же веществ различна в тропосфере и стратосфере. Так, CO2 присутствует в тропосфере 4 года, а в стратосфере — 2 года, озон — 30–40 суток в тропосфере, и 2 года в стратосфере, а окись азота — 150 лет (и там, и там).

Различна скорость накопления загрязнений в атмосфере (вероятно, связанная с утилизационной способностью биосферы). Так содержание CO2  возрастает по 0,4% в год, а окислов азота — по 0,2% в год.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями
Добавить в избранное (необходима авторизация)