Нужна помощь в написании работы?

При зиготном типе мейоза, характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др., для которых в жизненном цикле преобладает гаплоидная фаза, две клетки — гаметы — сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делится, в результате образуются четыре гаплоидные клетки, которые продолжают размножаться.

Saccharomyces cerevisiae.

Дрожжи относятся к голосумчатым грибам (Protascales). Они плодовых тел не имеют, и сумки образуются прямо из зиготы.

Спорообразование наступает после многократного размножения почкованием или делением. Оно легче осуществляется при резком переходе от обильного питания к скудному, но при достаточном доступе кислорода. В большинстве случаев споры образуются без оплодотворения (партеногенетически). При этом в одной клетке образуется четное число спор (чаще 4-8). Споры в лаборатории получают на специальных гипсовых блоках или на среде Городковой, содержащей 0,25 г глюкозы.

 Предварительный половой процесс наблюдается не у многих видов (Saccharomyces Ludwigii и др.). Две смежные клетки образуют выросты, которые сближаются друг с другом. На месте соединения выступов оболочка растворяется, содержимое клеток сливается, и образуется зигота. Происходит редукционное деление, затем еще 2-3 деления, в результате чего получается 8 или 4 аскоспоры. Клетка, образовавшаяся в процессе слияния двух дрожжевых клеток, и является сумкой. После некоторого периода покоя споры прорастают и вновь размножаются почкованием или делением.

Newrospora crassa

  Грибы рода нейроспора чаще встречаются в конидиальной стадии, образуя микроконидии, а также скопления оранжевых или розовых конидий. Мицелий состоит из обильно ветвящихся гиф, клетки которых всегда одноядерные. Перитеции здесь, в отличие от большинства сферейпых, светлые. Эти грибы широко распространены в природе (особенно в почве) и издавна являются излюбленными объектами генетических исследований. Такой вид, как нейроспора густая (N. crassa), — пожалуй, наиболее популярный объект среди гаплоидных организмов, подобно тому как муха дрозофила— среди диплоидных.

        На нейроспоре густой был особенно успешно применен тетрадный анализ, т. е. анализ, проводимый по гаплоидным продуктам мейоза. Этот метод дает возможность анализировать гаплоидные особи, развивающиеся из аскоспор; он впервые позволил непосредственно доказать, что менделевское расщепление является закономерным ходом мейоза, что оно представляет не статистическую, а биологическую закономерность. Этот метод позволил определить результаты кроссинговера непосредственно по гаплоидным продуктам мейоза, что необходимо для доказательства соответствия рекомбинантных зигот кроссинговерным гаметам.

Нейроспо́ра густа́я (лат. Neurospora crassa) — вид мицелиальных грибов отдела аскомицетов. Один из наиболее популярных объектов генетики.

Род Neurospora («красная хлебная плесень») относится к группе пиреномицетов. Мицелий густой, обильно ветвящийся. Клеточная стенка в молодых гифах толщиной чуть больше 100 нм, трёхслойная (β-1,3→1,6-глюкановый, белково-хитиновый, белковый слои). Клетки гиф всегда одноядерные.

Жизненный цикл гаплофазный. Преобладает конидиальное («бесполое») спороношение. На гифах развиваются микроконидии и артроконидии, скопления ярко окрашенных (розовых или оранжевых) конидий. Название Neurospora род получил из-за характерной исчерченности на спорах, напоминающей нервные волокна (греч. νευρων — «жилка»).

Плодовые тела — перитеции, светло окрашенные; иногда недоразвиты (склероции). В сумках аскоспоры располагаются линейно по 8: после мейоза обычно происходит ещё одно (митотическое) деление (у нейроспоры четырёхспоровой Neurospora tetraspora — нет).

В природе среди видов нейроспоры преобладают почвенные (N. crassa встречается главным образом в тропиках и субтропиках). Отличаются термоустойчивостью, в связи с чем их можно обнаружить на обгоревших растениях после пожаров, а также в плохо пропечённом хлебе.

Neurospora crassa известна как модельный организм генетических исследований, так как она быстро растёт на минимальной среде и имеет гаплоидный жизненный цикл. Генетический анализ в этом случае оказывается простым, так как рецессивные черты проявляются в первом же поколении. Геном нейроспоры — семь хромосом (групп сцепления).

На N. crassa впервые было непосредственно доказано, что менделевское расщепление признаков — закономерный результат мейоза, а не статистическая закономерность. Линейное расположение мейоспор в аске позволяет определить результаты кроссинговера непосредственно по гаплоидным продуктам. (См. Тетрадный анализ.)

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Нейроспора использовалась в экспериментах Э. Тейтума и Дж. Бидла по изучению генетического контроля процессов метаболизма. Вызванные рентгеновским облучением мутации приводили к изменению структуры генов и легко выявлялись по нарушениям отдельных биохимических реакций. Это привело исследователей к гипотезе «Один ген — один фермент» и представлению о том, что каждый ген кодирует определённый белок. В 1958 году Бидл и Тейтум получили Нобелевскую премию по физиологии и медицине.

В составе ДНК доля пар Г+Ц — 52—55 %. Доля кодирующих (неповторяющихся) последователей — 90 % генома. К 2003 году геном N. crassa был полностью секвенирован. Он составляет 43 млн пар оснований и содержит около 10 000 генов.

ВОПРОС №23: НЕРЕГУЛЯРНЫЕ ТИПЫ ПОЛОВОГО РАЗМНОЖЕНИЯ У РАСТЕНИЙ И ЖИВОТНЫХ И ИХ МЕХАНИЗ.

 У животных и растений встречаются так называемые нерегулярные типы полового размножения. Это прежде всего апомиксис (от греч. «апо» — без, «миксис» — смешение), т.е. половое размножение без оплодотворения. Апомиксис противоположен амфимиксису («амфи» — разделенный), т. е. половому размножению, происходящему путем слияния разнокачественных гамет. Синоним апомиксиса — партеногенез, т. е. девственное размножение от греч. «партенос» — девственница). Термин апомиксис чаще употребляют в отношении растений, а партеногенез — в отношении животных.

 Партеногенез может быть гаплоидным и диплоидным. При гаплоидном, или генеративном, партеногенезе новый организм развивается без оплодотворения, из гаплоидной яйцеклетки. Развивающиеся при этом особи могут быть только мужскими, только женскими или теми и другими. Это зависит от хромосомного механизма определения пола. Например, у пчел, паразитических ос, червецов, клещей самцы появляются в результате партеногенеза. Партеногенез может быть постоянным (облигатным), как в упомянутых случаях, или циклическим (факультативным). У дафний, тлей, коловраток партеногенетические поколения чередуются с половыми. У дафний, в частности, самки диплоидны, а самцы гаплоидны. В благоприятных условиях у дафний не происходит мейоза. Яйцеклетки диплоидны. Они развиваются без оплодотворения и дают начало только самкам. Это пример диплоидного, или соматического, партеногенеза. В неблагоприятных условиях (понижение температуры, нехватка корма) самки начинают откладывать гаплоидные яйца, из которых выводятся самцы. В результате полового процесса образуются диплоидные зиготы, вновь дающие начало самкам.

 В 1958 г. И. С. Даревский описал популяции ящериц рода Lacerta, состоящие из одних самок и размножающиеся партеноге-нетически. Затем аналогичное явление было обнаружено у ящериц рода Cnemidaphorus. Оказалось, что у них перед мейозом в гениальных клетках происходит эндомитотическое удвоение числа хромосом. Далее эти клетки проходят нормальный цикл мейоза и в результате образуются диплоидные яйцеклетки, которые без оплодотворенид дают начало новому поколению, состоящему только из самок.

 Явление апомиксиса у растений связано с драматическими страницами в истории генетики. По неудачному совету К. Нэгели Г. Мендель после 1865 г. занялся проверкой открытых им закономерностей у ястребинок (Hieracium). Скрещивая разные виды этого растения, он обнаружил расщепление в F и полное единообразие в Fi. Получив этот результат, Г. Мендель опубликовал его в работе «О некоторых бастардах Hieracium, полученных искусственным оплодотворением» (1869) и бросил занятия гибридизацией. Только через 40 лет выяснилось, что Г. Мендель столкнулся с апомиктическим размножением. Очевидно, выбранные формы были факультативно апомиктическими. В поколении, которое Г. Мендель считал первым гибридным, происходило расщепление исходно гетерозиготных форм. Теперь известно, что факультативные апомикты после гибридизации приобретают способность к устойчивому апомиксису.

 Знание закономерностей партеногенеза и хромосомного механизма определения пола у шелкопряда было использовано Б. Л. Астауровым для отбора наиболее продуктивных линий. Если извлечь из самок неоплодотворенные и не прошедшие мейоза яйца, то при прогревании их до 46 ° С мейоз отсутствует. Эти яйца содержат Z- и W-хромосомы. Они развиваются партеногенетиче-ски и дают начало только самкам, так как у шелкопряда женский пол гетерогаметен. Таким образом можно быстро размножать ценный племенной материал.

 Наряду с партеногенезом наблюдается и развитие яйцеклетки, активируемое сперматозоидом, не участвующим в оплодотворении. Мужской пронуклеус погибает, а организм развивается за счет женского пронуклеуса. Это явление называется гиногенезом, который встречается у гермафродитных круглых червей и у некоторых рыб.

 Противоположность гиногенеза — андрогенез — развитие только за счет мужского пронуклеуса в случае гибели женского пронуклеуса. Гаплоидный андрогенез встречается очень редко. Развитие андрогенных особей до взрослого состояния наблюдали только у наездника Habrobracon и у тутового шелкопряда.

 У тутового шелкопряда при оплодотворении в яйцеклетку проникает несколько сперматозоидов, но ядро лишь одного из них сливается с ядром яйцеклетки, остальные погибают. Если неоплодотворенные яйцеклетки активировать температурным шоком, как это описано выше, и облучить рентгеновскими лучами, то ядро яйцеклетки погибнет. Если далее такие энуклеированные яйца осеменить, то два мужских пронуклеуса, проникшие в яйцеклетку, сливаются между собой. За счет образовавшегося диплоидного ядра развивается зигота. Как показал Б. Л. Астауров, такие андро-генетические зиготы всегда превращаются в самцов, поскольку они несут две одинаковые половые хромосомы — ZZ. Получение чисто мужского потомства у шелкопряда экономически выгодно, так как самцы продуктивнее самок.

 В практических целях эта задача иначе была решена В. А. Струн-никовым.

Поделись с друзьями
Добавить в избранное (необходима авторизация)