Нужна помощь в написании работы?

Цитоплазматическое наследование

Для того чтобы та или иная структура могла выполнять функции материального носителя наследственности и обеспечивать количественные закономерности наследования, она должна содержать материальные носители генетической информации (нуклеиновые кислоты), обладать способностью к самовоспроизведению и точно распределяться по дочерним клеткам при делении. Всем трем условиям полностью удовлетворяют только структуры ядра – хромосомы. Наследование, определяемое хромосомами, получило названиеядерного илихромосомного.

Полуавтономные органоиды цитоплазмы – митохондрии и пластиды – содержат ДНК и обладают способностью к саморепродукции. В тех случаях, когда материальной основой наследования являются элементы цитоплазмы, оно называется нехромосомным илицитоплазматическим.

В отличие от хромосом, митохондрии и пластиды не распределяется при делении клетки с абсолютной точностью. Именно в этом и состоит главное отличие ядерных структур (хромосом) от цитоплазматических. Кроме того, ядро содержит ограниченное и характерное для каждого вида число хромосом; в цитоплазме же обычно много однозначных органоидов, число их, как правило, непостоянно. Ядро в большинстве случаев не способно исправить и заместить возникшие дефекты хромосом, они воспроизводятся при делении клетки; поврежденные и неспособные к размножению органоиды цитоплазмы могут быть замещены путем размножения одноименных неповрежденных структур.

Приведенные различия в свойствах хромосом и полуавтономных органоидов цитоплазмы должны обусловливать и различия в закономерностях наследования, определяемых этими элементами клетки. Поскольку и у растений, и у животных яйцеклетка содержит много цитоплазмы, а мужская гамета ее, как правило, почти лишена, следует ожидать, что цитоплазматическое наследование, в отличие отхромосомного, должно осуществляться по материнской линии. Поскольку для органоидов цитоплазмы нет такого точного механизма распределения при делении клеток, который существует для хромосом, то, очевидно, цитоплазматическое наследование не может характеризоваться такими строгими количественными закономерностями, как ядерное.

Генетический материал митохондрий включает несколько десятков кольцевых и линейных двуспиральных правозакрученных молекул ДНК, которые отличаются по нуклеотидному составу от ядерной ДНК (яДНК) и не связаны с гистонами. Длина одной молекулымитохондриальной ДНК (мтДНК) – 15–75 тпн. (в тысячи раз меньше, чем длина яДНК), что позволяет кодировать несколько десятков белков (25– 125 полипептидов с молекулярной массой М = 40000). В мтДНК закодированы: транспортные и рибосомальные РНК (рибосомы митохондрий отличаются от рибосом цитоплазмы), некоторые ферменты (3 из 7 субъединиц цитохромоксидазы, две субъединицы комплексацитохромов b–с1, иногда – субъединицы АТФазы). Этого недостаточно, чтобы обеспечить существование и функционирование митохондрий. Часть белков (ДНК- и РНК-полимеразы, белки митохондриальных рибосом, субъединицы дыхательных ферментов) поступает в готовом виде из цитоплазмы или в виде соответствующих иРНК, закодированных в яДНК. мтДНК человека представлена кольцевой молекулой длиной 16569 пни содержит 13 белковых генов, 22 гена тРНК и 2 гена рРНК. Кодирующие последовательности разделены короткими межгенныминекодирующими участками, для которых характерен высокий уровень полиморфизма, обусловленный заменами, потерями и вставками нуклеотидов.

Генетический материал хлоропластов включает несколько десятков кольцевых двуспиральных правозакрученных молекул ДНК, которые являются копиями друг друга. ДНК хлоропластов (хлДНК) также отличается по нуклеотидному составу от яДНК и не связана с гистонами, однако имеются и черты сходства с яДНК (некоторые гены тРНК имеют интрон-экзонную структуру, а именно гены аланиновой иизолейциновой тРНК). Длина одной молекулы хлДНК – несколько сотен тпн (примерно в 10 раз больше, чем одиночная молекула мтДНК).хлДНК кодирует: часть транспортных и рРНК (рибосомы пластид отличаются от рибосом цитоплазмы), некоторые белки ( 3 субъединицыАТФазы, белки наружной и внутренней мембран, большую субъединицу рибулезодифосфаткарбоксилазы – всего около 30 белков, хотя теоретически может кодировать 100–150 белков). Большая часть белков хлоропласта закодирована в яДНК.

Особенности генетической информации, закодированной в ДНК полуавтономных органоидов. Генетическая информация, закодированная в полуавтономных органоидах, в наибольшей степени наследуется через цитоплазму, то есть по материнской линии. Считается, что мтДНК и хлДНК в наименьшей степени подвержены действию естественного отбора. Эти обстоятельства используются в микросистематике для выявления родственных связей между группами организмов. Однородность мтДНК человека позволяет предположить, что современное человечество происходит от немногих особей женского пола. Существует гипотеза, согласно которой некоторые гены способны переходить из одних типов ДНК в другие, например, из хлДНК в мтДНК. В то же время генетический код полуавтономных органоидов обладает специфичностью, например, триплет АУА в яДНК кодирует изолейцин, а в мтДНК – метионин, кодон ЦУГ – в яДНК – лейцин, в мтДНК – треонин. Существуют и другие разночтения кодонов.

Пластидное наследование

О первых фактах пластидного наследования сообщили Э. Баур и К. Корренс еще на заре развития генетики (в 1909 г.). Так, Корренс изучил наследование белой пестролистности у ночной красавицы (Mirabilis jalapa). У этого вида встречаются пестролистные растения, которые имеют в точках роста разные группы клеток: с нормальными пластидами и с пластидами, неспособными к образованию хлорофилла. Вследствие этого иногда на растении образуются три типа побегов: чисто-зеленые, пестрые или совершенно белые. Белые побеги на мозаичном растении существуют за счет ассимилятов, поступающих из зеленых и пестрых побегов, в которых идет фотосинтез. Семена, полученные с белых ветвей, дают нежизнеспособные всходы, так как у них не идет процесс фотосинтеза.

При опылении цветков на разных типах побегов пыльцой с разных типов побегов дает следующие результаты:

Описание: image001

На основании этого был сделан вывод, что наследование пестролистности у ночной красавицы связано с передачей и распределением при клеточных делениях двух типов пластид – зеленых и неокрашенных, причем передаются пластиды яйцеклеткой, в результате чего наследование осуществляется по материнской линии. Развитие белых или зеленых частей растений из зиготы, содержащей пластиды обоих типов, определяется скоростью воспроизведения разных пластид и их распределением в ходе клеточных делений. Например, клетки, получившие только зеленые пластиды, дают зеленые участки тканей, а из клеток, имеющих только неокрашенные пластиды, образуются белые участки.

В некоторых случаях, например у герани, пластиды передаются не только яйцеклеткой, но и спермием, содержащим цитоплазму. При этомпестролистность наследуется не только по материнской, но и по отцовской линии, т. е. имеет место так называемое двуродительскоенаследование.

Наследование через митохондрии

У некоторых грибов (дрожжи, нейроспора) была обнаружена дыхательная недостаточность, которая обусловлена необратимыми наследственными изменениями функции митохондрии – у них утрачена активность цитохромоксидазы. Б. Эфрусси обнаружил штаммы дрожжей Saccharomyces cerevisiae, которые спонтанно образуют карликовые колонии с дыхательной недостаточностью. Поскольку колонии возникают при вегетативном размножении гаплоидных дрожжей, эта форма была названа вегетативным карликовым штаммом. Наряду с вегетативными карликовыми колониями была обнаружена форма, по фенотипу – росту и дыхательной недостаточности – сходная с первой, но она давала расщепление по признаку карликовости, как будто он определялся одним ядерным геном; эта форма была названа расщепляющимся карликовым штаммом.

Генетический анализ вегетативного и расщепляющегося карликовых штаммов  показывает, что фенотип расщепляющейся карликовости определяется ядерным геном (при скрещиваниях наблюдается расщепление в отношении 1:1). При скрещивании вегетативных карликов и нормальных дрожжей диплоидная зигота, в которой есть митохондрии от нормальной формы, не дает расщепления – из спор (аскоспор) не появляются мелкие колонии. Следовательно, у этих форм геномы одинаковы, различалась лишь цитоплазма. Расщепления по типу цитоплазмы в мейозе не происходит. В данном эксперименте факт цитоплазматического наследования очевиден.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Получено и прямое доказательство роли митохондрии в наследственной передаче дыхательной недостаточности у дрожжей. Вегетативных карликов, лишенных клеточных оболочек, выращивали в присутствии изолированных митохондрии нормальных дрожжей. В результате часть образовавшихся колоний (2–2,5%) имели нормальные размеры. Этот факт можно объяснить, предположив, что «нормальные» митохондрии, попав в клетки вегетативных карликов, исправили дефект их дыхательной системы и, передаваясь из клетки в клетку в ходе деления, способствовали образованию нормальных колоний.

Поделись с друзьями

Проверь свои знания, ответь на тесты по теме:

ДНК передающаяся по материнской линии

Выберите свойства мтДНК

Добавить в избранное (необходима авторизация)