Сцепленное наследование — феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.
Полной корреляции не бывает из-за мейотического кроссинговера, так как сцепленные гены могут разойтись по разным гаметам. Кроссинговер наблюдается в виде расцепления у потомства тех аллелей генов и, соответственно, состояний признаков, которые были сцеплены у родителей.
Наблюдения, проведённые Томасом Морганом, показали, что вероятность кроссинговера между различными парами генов разная, и появилась идея создать генные карты на основании частот кроссинговера между разными генами. Первая генная карта была построена студентом Моргана, Альфредом Стёртевантом (англ.) в 1913 году на материале Drosophila melanogaster.
Расстояние между генами, расположенными в одной хромосоме, определяется по проценту кроссинговера между ними и прямо пропорционально ему. За единицу расстояния принят 1 % кроссинговера (1 морганида или 1 сантиморганида). Чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними будет происходить кроссинговер. Максимальное расстояние между генами, расположенными в одной хромосоме, может быть равно 49 сантиморганидам.
Принципы картирования хромосом эукариот. Цитологические, генетические и физические карты.
Сотрудник Моргана А. Стертевант предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния, на котором они находятся друг от друга. Он провел анализирующее тригибридное скрещивание, в котором родительские формы различаются по генам b (black – окраска тела), vg (vestigial – форма крыльев) и pr (purple – окраска глаз), сцепленными друг с другом. Далее он определил частоту кроссинговера между всеми тремя генами попарно. И на основе этих данных, пользуясь правилом аддитивности, расположил три гена в линейной последовательности (сумма частот рекомбинации между pr и b, pr и vg приблизительно равна частоте рекомбинации между b и vg, pr находится между b и vg). Так строится простейшая карта группы сцепления (генетическая карта). В строгом смысле группа сцепления – группа генов, проявляющих сцепленное наследование. Но так как такое наследование отражает локализацию генов в одной хромосоме, обычно под группой сцепления понимают группу генов, расположенных в одной хромосоме. Но иногда гены, расположенные в одной хромосоме, не обнаруживают сцепления. Генетическое расстояние, на котором кроссинговер происходит с вероятностью 1%, - 1 сантиморган (сМ).
Между любыми двумя сцепленными генами возможен не только одиночный, но и двойной (или множественный) кроссинговер, что приводит к сокращению регистрируемой частоты кроссинговера и, следовательно, расстояния между генами на карте. Кроме того, между обменами на соседних участках хромосом существует взаимовлияние – интерференция (I), степень и характер которой измеряется величиной коинциденции (С). Коинциденция – частное от деления реально наблюдаемой частоты двойных кроссинговеров на теоретически ожидаемую частоту (если обмены на соседних участках происходят независимо друг от друга). I=1-C. Если C<1, то интерференция положительная, то есть одиночный обмен препятствует обмену на соседнем участке хромосомы. Если C>1, то интерференция отрицательная, о есть один обмен как бы стимулирует дополнительные обмены на соседних участках. В действительности при кроссинговере существует только положительная интерференция.
Т. о., при картировании надо учитывать противоположные тенденции (двойные обмены («сокращение» расстояния между генами) и интерференцию (препятствие множественным обменам, вероятность которых увеличивается с расстоянием)). У дрозофилы на больших расстояниях (35% рекомбинации) интерференция исчезает (Меллер). Следовательно, наиболее точные данные о частоте кроссинговера можно получить только на коротких расстояниях – около 10сМ.
Функция Дж. Холдэйна описывает зависимость частоты рекомбинации от реального расстояния с учетом множественных обменов: rf(d)=(1-e-2d)/2, где rf - картирующая функция (частота учитываемых кроссинговеров), d – реальное расстояние, на котором происходят обмены, е – основание натурального логарифма. Функция Холдэйна показывает, что с увеличением расстояния rf приближается к 0,5. То есть между генами, расположенными далеко друг от друга, выявляется около 50 единиц рекомбинации (такая же частота у генов, находящихся в разных хромосомах). Между такими генами нельзя уловить сцепления; несмотря на физическое сцепление, они будут наследоваться независимо.
В настоящее время карты групп сцепления построены для многих генетических объектов: от бактериофагов до человека. У объектов, хорошо изученных в цитологическом и генетическом отношении, число групп сцепления и гаплоидное число хромосом совпадают. Несмотря на то что между сцепленными генами регистрируемая частота кроссинговера не может быть больше 50%, длина групп сцепления может превышать и 50 и даже 100%, так как общая длина групп сцепления составляется благодаря суммированию коротких расстояний, определяемых в опыте.
Составление цитологических карт удобно для объектов, у которых наиболее четко различима продольная дифференцировка хромосом по хромомерному строению, как это видно в пахитене у кукурузы. Очень удобны гигантские хромосомы дрозофилы, где хорошо различимы диски гетерохроматина и междисковые участки эухроматина.
Поможем написать любую работу на аналогичную тему