Постнеклассическая наука формируется в 50-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах.
Так, в 1947 г. Уолтер Браттейн, Джон Бардин и Уильям Шокли открыли свойства полупроводника - управление большими токами при помощи малых. Так появился транзистор - прибор, который состоял из пары p-n переходов. Его изобретение привело к появлению микросхем и микропроцессоров - основы для современных компьютеров и радиоэлектронной аппаратуры и т.д.
В 1953 г. Фрэнсис Крик и Джеймс Уотсон предложили трехмерную структуру молекулы ДНК. Вопрос о том, что и как записано в ДНК, ускорил расшифровку генетического кода. Осознание того, что гены - это ДНК, универсальный носитель генетической информации, привело к появлению генной инженерии.
Проблема клонирования животных была решена группой Яна Вильмута (Wilmut) в 1997, когда родилась овца по имени Долли - первое животное, полученное из ядра взрослой соматической клетки. В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова).
Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхождения от низших химических систем к высшим.
Научные открытия:
40-е гг. – телевидение, транзисторы, компьютеры, радар, ракеты, атомная бомба, синтетические волокна, пенициллин;
50-е гг. – водородная бомба, искусственные спутники Земли, реактивный пассажирский самолет, электроэнергетическая установка на базе ядерного реактора, станки с числовым программным управлением (ЧПУ);
60-е гг. – лазеры, интегральные схемы, спутники связи, скоростные экспрессы.
70-е гг. – микропроцессоры, волоконно-оптическая передача информации, промышленные роботы, биотехнология;
80-е гг. – сверхбольшие и объемные интегральные схемы, сверхпрочная керамика, компьютеры пятого поколения, генная инженерия, термоядерный синтез.
Естествознание конца XX века характеризуется рядом специфических черт, которые позволяют говорить об уже начавшемся повороте к новому этапу его развития. Этот этап, получивший название постнеклассического (или неонеклассического), был вызван не столько проблемами физики "переднего края" (микромир, космос), сколько острой необходимостью понять сложные экономические, социально-политические, общественные процессы, инициированные научно-техническим прогрессом. Ввиду того, что последствия этого прогресса оказались далеко не однозначными, более того, начали угрожать человечеству (ядерная, экологическая катастрофа, деградация культуры и человеческой психики), потребовалась научно-обоснованная реакция общества на эти негативные последствия.
Для выполнения этого социального "заказа", наука должна была перейти к изучению больших и очень сложных систем, какими являются человек, биосфера, общество и т.п. Для анализа таких систем ученым пришлось отказаться от аналитического подхода к изучаемым объектам, основанного на все большем и большем "погружении" в глубь его структуры. Основными методами исследования становятся синтетические методы, концентрирующие внимание на специфических особенностях поведения сложных саморазвивающихся систем, пронизанных многочисленными нелинейными обратными связями между подсистемами.
Одним из первых применил такой синтетический метод основоположник кибернетики Н. Винер. Развития системного подхода и его применение к сложноструктурированным объектам привело, в конце концов, к созданию нового направления в естествознании – синергетике – теории о самоорганизации и развитии сложных систем любой природы, в основу которой были положены работы Германа Хакена, Ильи Пригожина и других.
Теория о самоорганизации сложных систем выросла на почве термодинамики, которая начала складываться с середины XIX века. Этот раздел физики изучает свойства макроскопических систем в состоянии термодинамического равновесия и процессы перехода из одного состояния в другое. Примечательно, что в центре внимания термодинамики стоят системы, развитие которых характеризуются необратимостью. Иными словами, время здесь имеет строго определенную направленность. Например, законы классической механики остаются справедливыми и для тех процессов, время которых обращено вспять. В термодинамике же эта операция со временем неосуществима, поскольку она нарушает один из фундаментальных её законов, согласно которому термодинамические системы всегда изменяются в сторону увеличения энтропии (меры беспорядка). Очевидно, что подобные системы имеют необратимый характер.
Такая же черта, как необратимость свойственна и эволюционным процессам в биосистемах, и, в частности, она присутствует в теории Дарвина о происхождении новых видов растений и животных. Однако если в термодинамических системах процесс идёт в сторону дезорганизации, то в биосистемах эволюционные процессы, напротив, сопровождаются усложнением их организации. Одна из причин такого положения дел заключается в том, что термодинамические системы являются изолированными, замкнутыми системами, которые не обмениваются с внешней средой ни энергией, ни веществом, ни информацией (разумеется, такие системы являются научной абстракцией), в то время как биосистемы всегда являются открытыми, ибо они постоянно взаимодействуют с внешней средой.
В центре внимания синергетики стоят открытые системы, способные обмениваться с внешней средой энергией, веществом и информацией. И граница, отделяющая биосистемы от систем неживой природы, размывается.
Оказывается, открытые системы способны к самоорганизации, и биологические организмы тому пример. Однако и в неживой природе существует множество систем, способных к самоорганизации. Примером такой системы является лазер, с помощью которого получают мощное оптическое излучение. Хаотичные колебательные движения составляющих его частиц, благодаря поступлению энергии извне, приводятся в согласованное движение, из-за чего мощность лазерного излучения во много раз увеличивается.
Самоорганизующиеся системы, помимо того, что они должны быть открытыми, характеризуются следующими особенностями:
1) Эти системы время от времени приходят в неравновесное, неустойчивое, нестабильное состояние – это так называемые “точки бифуркации”.
2) Эти системы в состоянии неустойчивости очень чувствительны к случайным отклонениям в ту или иную сторону; малое возмущение (флуктуация) способно вызвать изменение всей макроструктуры в целом. Таким образом, можно сказать, что появление нового в мире всегда связано с действием случайных факторов.
3) Эти системы в состоянии неустойчивости могут сами себе задавать законы дальнейшего развития, т.е. они располагают множеством путей развития. Иными словами, самоорганизующиеся системы в принципе непредсказуемы.
4) Эти системы должны быть достаточно сложными для того, чтобы проявились принципы самоорганизации. Иными словами, сложность таких систем должна превышать определенный порог.
Разумеется, для того, чтобы в самоорганизующейся системе образовался новый, более сложный порядок (и, соответственно, энтропия системы уменьшилась), необходим постоянный приток энергии извне.
Таким образом, синергетический подход позволяет создать общую теорию эволюции как в живой, так и в неживой природе.
А поскольку самоорганизация свойственна как материальным, так и духовным системам, то существование общего подхода дало возможность сблизить естественные и гуманитарные дисциплины.
Огромную роль для этого сближения сыграл принцип коэволюции, который гласит, что эволюционные процессы, прослеживаемые на природном и духовном уровнях, тесно взаимосвязаны между собой.
Этот принцип, в частности, лег в основу социобиологии – науки, образованной на стыке гуманитарных и естественно–научных дисциплин. (Её основоположником считается американский учёный Э. Уилсон, который в 1975 г. выпустил в свет книгу «Социобиология: новый синтез».) С точки зрения социобиологии человек состоит из биологической и социальной компоненты; первая компонента изучается в естествознании, вторая – в гуманитарном познании. И задача, которую видит перед собой социобиология, заключается в том, чтобы дать наиболее полное описание природно-биологических основ жизнедеятельности человека и в том, чтобы объяснить эволюцию культуры изменениями на биологическом уровне. А взаимосвязь природного и социального в человеке обозначается здесь как взаимосвязь генно-культурной коэволюции. (Один из главных тезисов социобиологии звучит так: каждая форма социального поведения имеет генетическую основу, которая «принуждает» индивидов действовать так, чтобы обеспечить максимальный успех для себя и сообщества.)
Объектами познания классической науки были простые системы, состоящие из ограниченного набора элементов. Объектами познания неклассической науки были сложные системы (например, термодинамические системы). В постнеклассической же науке внимание учёных всё больше и больше стали привлекать исторически развивающиеся системы, которые с течением времени способны формировать всё более новые уровни своей организации. Причём возникновение каждого нового уровня сопровождается воздействием на ранее сформировавшиеся уровни, что приводит к изменению композиции их элементов.
Добавим также, что в современной науке теперь стали изучаться «человекоразмерные» системы, к которым, в частности, относятся медико-биологические системы, экологические системы или, например, система «человек – машина».
К особенностям нынешнего этапа в развитии науки можно отнести и наметившуюся тенденцию к сближению природного, объективного мира и мира человека. Причём это сближение осуществляется как со стороны естественно–научных дисциплин, так и со стороны гуманитарных дисциплин. И свидетельством тому является, например, широко распространившийся в естествознании ХХ века так называемый «антропный принцип», согласно которому Вселенная, описываемая теорией, должна теперь включать в себя, хотя бы как возможность, появление человека – своего наблюдателя.
Поможем написать любую работу на аналогичную тему
Реферат
Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности.
От 250 руб
Контрольная работа
Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности.
От 250 руб
Курсовая работа
Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности.
От 700 руб