Нужна помощь в написании работы?

Температура. Температура внешней среды является мощным фактором воздействия на организмы, который определяет не только интенсивность их развития, но и вообще возможность развития. Принято различать три основные температурные точки, имеющие значение для развития микробов: температурный оптимум, минимум и максимум.

Температурный оптимум- температура, при которой данный вид микробов наиболее хорошо развивается, т.е. температура, соответствующая физиологическим требованиям соответствующего микроорганизма. При температурном минимуме или максимуме развитие микробов еще возможно, но уже ограничено. При температуре выше максимума микробы обычно погибают. При температуре ниже минимума они переходят в состояние анабиоза, а при повышении температуры могут возвращаться к активной жизни.

По отношению к температурному фактору микроорганизмы делят на три группы – психрофилы (холодолюбивые), мезофилы ( развивающиеся при средних температурах) и термофилы (теплолюбивые) Такое деление производят на основе оптимальной температуры развития. Примерные границы температур для различных групп представлены в таблице 1.

Таблица 1  Температуры для различных групп микроорганизмов, °С

Микроорганизмы

Минимальная

Оптимальная

Максимальная

Психрофилы

- 8 - 10

+ 10 + 15

+ 15 + 20

Мезофилы

+ 5 + 10

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

+ 30 + 37

+ 40 + 45

Термофилы

+ 15 + 20

+ 40 + 55

+ 60 + 70

Вышеуказанные температурные границы приведены для размножения микроорганизмов. Для других процессов жизнедеятельности (спорообразование, образование токсинов, пигментов и др.) значения температур для тех же групп микроорганизмов могут быть иными.

Психрофилами - называют микроорганизмы, область температур роста которых лежит в пределах от 0 (или ниже) до 20 °С, хотя оптимум составляет 15°С. Психрофильные микроорганизмы являются обитателями холодных источников, глубоких озер и океанов, хорошо развиваются на продуктах при холодильном хранении. Наиболее сильной устойчивостью к низким температурам обладают плесневые грибы и гнилостные бактерии (-3-9°С).

Мезофилы живут при средних температурах. Самая распространенная группа микроорганизмов (бактерии, плесневые грибы, дрожжи). Мезофилами являются все патогенные и условно-патогенные микроорганизмы и большинство сапрофитных.

Термофилы развиваются при высоких температурах. Они в большом количестве встречаются в почве, сточных водах  и в навозе, в гейзерах, песках пустынь. Они участвуют в ряде биологических процессов: при самосогревании влажного сена и хлопка, силосовании кормов, вызывают порчу пастеризованных и стерилизованных продуктов.  Знание отношения разных видов микробов к воздействию температур позволяет культивировать их  в лабораториях на искусственных питательных средах. При этом учитывают  значения оптимальных для каждого вида микробных клеток  температурных режимов (в термостатах).

Отношение микроорганизмов к различным температурам стали использовать для сохранения различных пищевых продуктов. При этом используют как низкие, так и повышенные температуры. На основе этого применяют несколько технологических приемов обработки и хранения продуктов. Низкие температуры - хранение в охлажденном состоянии и замороженном. При хранении в охлажденном состоянии используют температуру 0 -+4°С, что позволяет продлить срок хранения, но если субстрат (продукт) достать из холодильника и оставить при комнатной температуре – он быстро испортится за счет развития  тех микроорганизмов, что находились в нем до охлаждения. При хранении продуктов в замороженном состоянии используют температуру -12 - 30°С. Несмотря на то, что при таких температурах микроорганизмы не размножаются и активная деятельность их приостанавливается, многие из них неопределенно долгое время остаются жизнеспособными, переходя в анабиотическое состояние. При хранении продуктов в охлажденном и замороженном состоянии большое значение имеет относительная влажность воздуха, скорость охлаждения и замораживания, исходная степень обсеменения психрофильными микроорганизмами. Замораживание не оказывает стерилизующего действия и могут выжить многие виды сапрофитов и болезнетворные формы микроорганизмов. Поэтому размороженные продукты могут быстро подвергаться порче. Размораживать замороженные продукты следует непосредственно перед употреблением.

В пищевой промышленности применяют два способа воздействия высоких температур: пастеризация и стерилизация.

Пастеризация – это нагревание продукта чаще при температуре 63-80 °С в течение 20-40 мин. Иногда пастеризацию проводят кратковременно в течение нескольких секунд при температуре 90-100 °С. При пастеризации погибают не все микроорганизмы. Некоторые термоустойчивые бактерии и споры грибов остаются жизнеспособными. Поэтому пастеризованные продукты следует немедленно охлаждать дотемпературы не выше 10 °С и хранить на холоде ( на льду и  в холодильнике), чтобы задержать прорастание спор и  развитие сохранившихся клеток. Пастеризуют молоко и молочные продукты, пиво, соки, рыбную икру, пресервы и некоторые другие продукты.

Стерилизация - это температура 112-120 °С в течение 20-60 мин. в специальных приборах - автоклавах (перегретым паром под давлением) или при 160-180°С в течение 1-2 часа в сушильных шкафах (сухим жаром).

Влажность. Микроорганизмы могут развиваться только в субстратах, имеющих свободную воду и в количестве не менее определенного уровня. С понижением влажности субстрата интенсивность размножения микробов замедляется, а при удалении из субстратов ниже необходимого уровня вообще прекращается. Потребность во влаге у различных микроорганизмов колеблется в широких пределах. По величине минимальной потребности во влаге для роста различают следующие группы: гидрофиты (влаголюбивые), мезофиты (средневлаголюбивые), ксерофиты (сухолюбивые). Гидрофитами являются большинство бактерий, а мицелиальные грибы и дрожжи мезофиты, но имеются среди них и гидрофиты.

Для развития микроорганизмов имеет значение не абсолютная величина, а доступность содержащейся в субстрате воды, которую в настоящее время принято обозначать термином водная активность или  аw. Водная активность показывает отношение давления водяных паров раствора (субстрата ) Р и чистого растворителя (воды) Ро при одной и той же температуре:  а w  = Р/Ро.

Водная активность выражается величинами от 0 до 1 и характеризует относительную влажность субстрата. Рост микроорганизмов наблюдается при значениях аw  от 0,99 до 0,65-0,61. Оптимальное значение для многих от 0,99-0,98, примерно в этих пределах находится водная активность скоропортящихся пищевых продуктов (мяса, рыба, плоды, овощи).

Бактерии развиваются при водной активности субстрата 0,94-0,90. Дрожжи - 0,88-0,85, мицелиальные грибы - 0,8. Но некоторые виды бактерий, дрожжей, мицелиальных грибов могут расти при водной активности -0, 75-0,62 (хотя и медленно).

Таким образом, продукты, у которых водная активность менее 0,7 , могут длительно сохраняться без микробной порчи. Перспективно, с точки зрения увеличения срока хранения скоропортящихся продуктов, искусственное снижение в них водной активности. Возможно снижение аw   при добавлении специфических веществ, способных связывать воду. 

Давно применяется хранение различных пищевых продуктов в сухом виде. В высушенном состоянии многие микробы сохраняют жизнеспособность в течение длительного времени. Устойчивы к высушиванию многие дрожжи и особенно споры бактерий и мицелиальных грибов (сохраняют способность к прорастанию десятки лет). Патогенные микробы (стафилококки, микрококки, брюшно-тифозные бактерии) могут сохраняться в сухом субстрате неделями и месяцами.

Для сохранения сухих продуктов без порчи большое значение имеют относительная влажность и температура в складских помещениях. Продукты обладают гигроскопичностью (могут отдавать влагу или поглощать ее). Между влажностью воздуха и влажностью продукта устанавливается определенное подвижное равновесие. При одной и той же относительной влажности воздуха различные продукты могут иметь разную равновесную влажность. Большинство бактерий способно развиваться в субстратах при равновесной относительной влажности воздуха в пределах не ниже 95-90%. Для дрожжей минимум в субстрате соответствует 90-85% относительной влажности воздуха, для большинства мицелиальных грибов - 80%, а для некоторых ксерофитных видов пределом является относительная влажность воздуха- 75-65%

Таким образом, возможность развития микроорганизмов в продуктах в связи с их влажностью можно учитывать как по величине водной активности продукта, так и по относительной влажности воздуха. Значение аw, умноженное на 100, соответствует относительной влажности воздуха, выраженной в процентах, когда система продукт - воздух находится в равновесии.

Относительная влажность воздуха изменяется от температуры: с понижением температуры воздуха уменьшается его влагоудерживающая способность и наоборот. Поэтому при снижении температуры в процессе хранения это приводит к увлажнению поверхности продукта, что способствует развитию находящихся на нем микробов. При хранении и перевозке высушенных продуктов необходимо принимать меры для предупреждения изменения их влажности.

При сублимационной сушке (высушивание под высоким вакуумом в замороженном состоянии) качество и пищевая ценность продуктов сохраняются значительно лучше, но микроорганизмы хорошо переносят такое высушивание и сохраняются жизнеспособными. Поэтому к таким продуктам следует предъявлять строгие санитарно-гигиенические требования.

Концентрация растворенных веществ и осмотическое давление. Внутриклеточное осмотическое давление обусловлено концентрацией растворенных веществ в цитоплазме клетки. У разных микроорганизмов оно колеблется в широких пределах и этим объясняется тот факт, что различные микроорганизмы могут обитать в пресной воде и соленых водах морей. Высокие концентрации осмотически активных веществ способствуют плазмолизу микробных клеток. В качестве осмотически деятельных веществ, применяемых для консервирования пищевых продуктов, используют поваренную соль и сахар.

Большинство бактерий мало чувствительно к концентрации NаСL в пределах 0,5-2%, но 3% - ное ее содержание в среде неблагоприятно для многих микроорганизмов. Размножение многих гнилостных бактерий подавляется при концентрации поваренной соли 3-4%, а при 7-10% оно прекращается. Палочковидные  гнилостные бактерии менее стойки, чем кокки. Развитие некоторых возбудителей пищевых отравлений (ботулинуса, сальмонелл) приостанавливается при 6-10% соли, но некоторые из них могут долго сохранять жизнеспособность даже при 20%. Микроорганизмы, нормально развивающиеся при высоких концентрациях поваренной соли (20% и выше) называют галофилами (солелюбивыми).

Концентрация соли, влияющая на развитие микроорганизмов, зависит от других условий среды (рН, температура). Развитие дрожжей в соленых продуктах подавляется в кислой среде при содержании соли 14%, а в нейтральной только при 20%. При понижении температуры подавляющее действие соли усиливается. При температуре 0 °С и 8% соли угнетается рост мицелиальных грибов, а при 20°С необходимо 12% соли для такого же эффекта. Имеются сведения об усилении действия поваренной соли в присутствии нитратов и нитритов.

Подавляющее воздействие соли на рост микроорганизмов объясняется не только повышением осмотического давления. Поваренная соль оказывает токсическое действие на микроорганизмы: подавляются процессы дыхания, нарушаются функции клеточных мембран и др.

Поскольку многие микроорганизмы в плазмолизированном состоянии длительное время не погибают, приостанавливается лишь их активная деятельность, к перерабатываемому сырью необходимо предъявлять строгие санитарно-гигиенические требования. Порча соленых товаров (мясо, рыба и др.) часто возможна под влиянием галофильных и солеустойчивых  микроорганизмов. Например, покраснение крепко соленой рыбы - «фуксин», вызывается галофильной бактерией, обладающей красным пигментом. Для задержки развития микроорганизмов соленые товары необходимо хранить при низких температурах.

Возможны различные виды порчи (плесневение, забраживание меда, джема, варенья, фруктовых сиропов и других сахаросодержащих продуктов) под воздействием осмофильных плесеней и дрожжей. Порчу продуктов, прошедших тепловую обработку, вызывают осмофильные температуровыносливые дрожжи, но порча может явиться и результатом вторичного инфицирования продуктов  микробами извне. Поэтому для предотвращения такого вида порчи необходимо разливать продукт в горячем виде в стерильную тару, герметично укупоривать ее и хранить при пониженной температуре.

Лучистая энергия. Различные формы лучистой энергии оказывают на микроорганизмы разнообразное физическое, химическое и биологическое действие. Биологическое действие излучения зависит от длины волны, чем она короче , тем в ней больше заключено энергии, тем сильнее воздействие на организм. В основе действия лежат физические и химические изменения, происходящие в клетках микроорганизмов и в окружающей среде. Изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности  действия излучения большое значение имеет проникающая способность лучей.

Солнечный свет обладает наибольшим потенциалом вредного воздействия на микроорганизмы. Способностью использовать энергию солнечного света обладают лишь пигментобразующие формы бактерий. Микроорганизмы, не имеющие пигмента, погибают под действием прямых солнечных лучей. Рассеянный солнечный свет подавляет их развитие постепенно. Однако, развитие многих мицелиальных грибов при постоянном отсутствии света протекает ненормально, хорошо развивается только мицелий, а спорообразование только тормозится. Под влиянием солнечных лучей происходят внутриклеточные химические реакции с образованием гидроксильных радикалов и других высокореактивных веществ, действующих губительно на микробную клетку.

Наиболее выраженное летальное действие оказывают световые волны, лежащие в ультрафиолетовой области спектра (длина волны менее 400 нм).

Ультрафиолетовые лучи (УФ - лучи) обладают или бактерицидным или мутагенным действием. Это вызывается изменениями в структуре ДНК. Из всех микроорганизмов наиболее чувствительны к УФ - лучам вегетативные формы бактерий, а споры бацилл в 4-5 раз более устойчивы. Очень чувствительны к УФ - лучам патогенные микроорганизмы .

Эффективность воздействия УФ - лучей зависит от дозы облучения, длительности и свойств облучаемого субстрата (рН, степень обсеменения микробами и температура). Очень малые дозы облучения действуют даже  стимулирующе на отдельные функции микроорганизмов. Более высокие - могут вызвать изменение наследственных свойств. Это используется на практике для получения различных штаммов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и др. БАВ. Дальнейшее увеличение дозы приводит к гибели.

В настоящее время УФ - лучи довольно широко применяют для дезинфекции воздуха микробиологических боксов, холодильных камер и производственных помещений. Искусственным источником ультрафиолетового излучения служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУФ-15, 30, 60). При обработке УФ - лучами  в течение 6 часов уничтожается до 80% бактерий и мицелиальных грибов, находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне, при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары упаковочных материалов, оборудования, посуды (на предприятиях общественного питания).

Стерилизация пищевых продуктов с помощью УФ - лучей затруднена вследствие их невысокой проникающей способности. Действие их проявляется только на поверхности или в очень тонком слое. Предлагается использовать УФ - лучи для стерилизации плодовых соков и вин (в тонком слое). При таком «холодном» способе стерилизации вино поучается лучшего качества и сохранятся без порчи дольше, чем пастеризованное.

ля некоторых продуктов, таких как сливочное масло, молоко, стерилизация УФ - лучами неприемлема. В результате такой обработки ухудшаются вкусовые и пищевые свойства таких продуктов. В последнее время УФ - лучи используют для дезинфекции питьевой воды.

Космические и рентгеновские лучи  представлены ионизирующими излучениями с длиной волны от 0,006 до10 нм. Они оказывают мутагенное  или летальное  действие. К действию таких лучей наиболее чувствительны ядерные структуры, хотя повреждаются и цитоплазматические структуры клеток.

Искусственное ионизирующее излучение (α- и b-частицы, g-лучи) возникает в результате работы атомных электростанций, испытаний ядерного оружия, применения радиоактивных изотопов в научных целях.

Эффект бактерицидного действия радиоактивных излучений обуславливается ионизацией внутриклеточных веществ. При прохождении ионизирующих излучений через клетку, некоторые атомы в результате поглощения энергии испускают электроны и превращаются в положительно  заряженные ионы. Свободный электрон присоединяется к нейтральному атому, который превращается в отрицательно заряженный ион. Такое изменение электронной структуры атомов приводит к изменению химических связей и разрушению структур молекул.

Микроорганизмы более устойчивы к излучениям, чем высшие животные и растительные организмы.  Дрожжи и плесени более устойчивы, чем бактерии. Споры бацилл и клостридий выносливее их вегетативных форм. Чувствительны к облучению кишечная палочка, протей, многие бактерии рода псевдомонас (распространенные возбудители порчи сырья и мясных и рыбных  продуктов). Микрококки отличаются повышенной устойчивостью. Высока радиоустойчивость вирусов, у некоторых она превосходит устойчивость бактериальных спор. При одной и той же  поглощенной дозе радиопоражаемость микроорганизмов одного и того же вида изменяется в зависимости  от возраста клеток, состава среды, температуры, дозы и длительности облучения. Установлено, что микроорганизмы способны восстанавливать лучевые повреждения, что определяется видовыми особенностями микроорганизмов и их физиологическим состоянием. Искусственные ионизирующие излучения используют для стерилизации лечебных препаратов и некоторых пищевых продуктов (но при этом могут ухудшаться вкус и пищевые качества). Их используют для задержки прорастания картофеля и овощей, зерна и зернопродуктов, сухофруктов, а также для ускорения или замедления созревания плодов и в других целях. Наиболее приемлемы для этих целей гамма – лучи, обладающие наиболее высокой проникающей способностью и не вызывающие при облучении появления в продукте «наведенной» радиации.

Радиоволны. Короткие электромагнитные волны длиной  от 10 до 50 м, ультракороткие длиной от10м до мм обладают стерилизующим эффектом. При прохождении коротких и ультракоротких радиоволн через среду возникают переменные токи высокой частоты (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую. 

Характер нагревания в СВЧ поле отличается от характера нагрева от обычных нагреваний и обладает рядом преимуществ. Объект нагревается быстро и равномерно по всей массе. Например, воду в стакане можно довести до кипения в течение двух – трех секунд. Рыба (1кг) варится до готовности в течение двух мин., мясо (1кг)-2,5 мин., курица 6-8 мин. Нагрев может происходить избирательно, отдельные части облучаемого объекта нагреваются в разной степени и зависят от их электрофизических свойств.

Благодаря специфическим особенностям перспективно применение этого способа нагревания для пастеризации и стерилизации пищевых продуктов (например, в плодово-ягодных консервах).  По сравнению с обычной паровой стерилизацией в автоклавах время нагревания СВЧ- энергией до одной   и той же температуры сокращается во много раз. Поэтому полнее сохраняются  вкусовые и питательные свойства. Эффект воздействия на его микрофлору практически одинаков.

Сверхвысокочастотную электромагнитную обработку пищевых продуктов все шире применяют в общественном питании (для варки, сушки, выпечки, при разогревании др.).

Давление и механическое сотрясение.  Микроорганизмы не испытывают значительных изменений под влиянием даже очень больших давлений, но есть группы микроорганизмов, которые развиваются только при избыточных давлениях.  Их называют барофильными (в глубинах морей и океанов). К механическим сотрясениям они чувствительны, если они сильные и длительные. Так, самоочищение бурных рек происходит в результате гибели микроорганизмов под воздействием сильных толчков воды.

Ультразвук.  Ультразвуком называют механические колебания с частотами более 20000 колебаний в секунду (20 кГЦ). Колебания такой частоты находятся за пределами слышимости человека. Ультразвуковые волны могут распространяться в твердых, жидких и газовых средах. Обладают большой механической энергией и вызывают ряд физических, химических и биологических явлений. Механизм бактерицидного действия ультразвука объясняется двумя теориями: кавитационно - механической и кавитационно - электрохимической. По первой теории считают, что ультразвуковые волны, распространяясь в упругой среде, вызывают в ней попеременные сжатия и разряжения. В  клетке  создаются огромные давления, достигающие десятков и сотней мПа, что вызывает механическое разрушение цитоплазматических структур  и гибель клетки (кавитация).

Кавитационная электрохимическая теория объясняет ионизацию паров жидкостей и присутствующих в ней газов при образовании кавитационного пузырька. При разрыве пузырька  происходит электрический разряд, сопровождающийся резким повышением температуры и образованием в кавитационной полости электрического поля высокого напряжения. При этом пары жидкости и высокомолекулярные соединения в кавитационной полости расщепляются на водород и гидроксильную группу с образованием активного кислорода, перекиси водорода, азотистой и азотной кислот, в результате чего происходят инактивация ферментов и коагуляция белков. Все это обуславливает гибель  микробной клетки.

Эффективность действия УЗ при одной и той же интенсивности и частоте колебаний зависит от продолжительности воздействия, химического состава облучаемой среды, ее вязкости , температуры, рН и исходной степени обсемененности микроорганизмами.  Чем больше микроорганизмов, тем продолжительнее должно быть воздействие для достижения стерилизующего эффекта.

Устойчивость микроорганизмов к действию ультразвука зависит от их биологических  свойств. Вегетативные клетки более чувствительны, чем споры, кокковые формы погибают медленнее, чем палочковидные. Более крупные клетки микроорганизмов отмирают быстрее, чем мелкие. Ультразвук применяют для стерилизации пищевых продуктов (молоко, фруктовые соки, вина), изготовления вакцин, мойки и стерилизации стеклянной тары, а также при извлечении внутриклеточных ферментов, токсинов, витаминов, нуклеиновых кислот и других компонентов клетки. Ведутся исследования по применению УЗ энергии для стерилизации питьевой воды.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями