Нужна помощь в написании работы?

Впервые архебактерии стали известны в 1977 г. благодаря работам американских ученых К. Везе и Г. Фокса по изучению молекулярнобиохимических свойств биополимеров клеток разных видов бактерий.

Ведущую роль в их открытии сыграл анализ состава и определение последовательности нуклеотидов в 16S-рРНК. Было показано, что метанобразующие бактерии резко отличаются по этому признаку от других обследованных организмов.

Впоследствии было установлено, что архебактерии, кроме этого, обладают рядом уникальных общих свойств, благодаря которым их выделили в отдельный класс.

1. Их клеточная стенка не имеет пептидогликана муреина, вместо которого в состав клеточной стенки входят кислые полисахариды, белки или псевдомуреин, не содержащий в отличие от муреина мурамовой кислоты, а в пептидных мостиках – D-аминокислот. Вместо ацетилмурамовой кислоты в состав муреина входит ацетилталозаминуроновая кислота, что определило устойчивость архебактерий к антибиотикам, нарушающим синтез клеточных стенок у эубактерий, – пенициллину, ампициллину, D-циклосерину и т. п.

2. Мембраны архебактерий не содержат в составе липидов сложных эфиров глицерина и жирных кислот, а представлены особыми бифитанильными глицериновыми эфирами, образованными путем конденсации глицерина с терпеноидными спиртами.

3. В тРНК архебактерий изменена общая для всех других организмов петля тимин–псевдоуридин–цитидин, в которой вместо тимина присутствуют другие основания.

4. Наличие в генах, кодирующих тРНК, интронов, которые имеются только в эукариотических геномах, но отсутствуют у большинства эубактерий.

5. Наличие в геноме архебактерий многократно повторяющихся последовательностей, что характерно для хромосомной ДНК эукариот. В области нуклеоида у архебактерий содержатся белки гистоны.

6. Архебактерии имеют более сложную структуру аппаратов трансляции и транскрипции. ДНК-зависимая РНК-полимераза, осуществляющая процесс транскрипции у архебактерий, состоит из 9–12 субъединиц, у эубактерий – из 4–8 субъединиц. РНК-полимераза архебактерий, подобно таковым у эукариот, не ингибируются рифампицином, их активность стимулируется силибином.

7. Рибосомы архебактерий содержат относительно больше белков, чем рибосомы эубактерий, причем они представлены более кислыми формами по сравнению с белками рибосом эубактерий. Кроме того, процесс биосинтеза белков у архебактерий не ингибируется такими антибиотиками, как хлорамфеникол и стрептомицин.

8. Особенностью конструктивного метаболизма архебактерий является отсутствие фиксации СО2 в цикле Кальвина. Основным путем автотрофной его фиксации является восстановительный путь карбоновых кислот в различных его модификациях, присущий и некоторым эубактериям.

9. Архебактерии неспособны использовать сложные высокомолекулярные соединения. Среди них не обнаружено активных продуцентов гидролитических ферментов, что, возможно, является одной из причин отсутствия патогенных и паразитических форм.

10. Некоторые архебактерии, в частности метаногенные, синтезируют уникальный набор коферментов, не встречающийся у других организмов, например кофермент М, никельтетрапиррольный фактор F430, фактор F420 (производное 5-деазафлавина), тетрагидрометаноптерин, метанофуран и др.

11. Архебактерии занимают необычные, часто экстремальные по условиям окружающей среды высокоспециализированные экологические ниши.

12. Морфология клеток архебактерий беднее, чем эубактерий. Среди них нет мицелиальных, стебельковых и трихомных форм, преобладают сферические и цилиндрические клетки, а также необычные плоские клетки, имеющие вид пластинок и коробочек разнообразной геометрической формы, сходные с кусочками битого стекла, что присуще только архебактериям.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

В настоящее время к архебактериям отнесены метаногенные; анаэробные серовосстанавливающие бактерии; экстремальные термофилы, метаболизирующие молекулярную серу; термоацидофильные микоплазмы и экстремально галофильные бактерии.

Метаногенные бактерии – самая многочисленная группа архебактерий, являющаяся облигатными анаэробами. Большинство представителей неподвижны, подвижные имеют полярные жгутики.

Источниками энергии служат процессы окисления молекулярного водорода, оксида углерода, метанола, муравьиной и уксусной кислот, акцептором электронов является углекислый газ, которая восстанавливается до метана. В природных средах метаногенные бактерии развиваются в ассоциации с другими микроорганизмами, выполняя функцию конечного звена в трофической цепи – превращают продукты брожения этих микроорганизмов в метан. Основные места обитания: торфяные болота, ил на дне водоемов, очистные сооружения сточных вод, пищеварительный тракт животных. Представители Methanobacterium, Methanosarcina, Methanospirillum и др.

Анаэробные серовосстанавливающие бактерии представлены одним родом Archaeoglobus, который состоит из двух видов: A. fulgidus (типовой вид) и A. profundus. Это облигатные анаэробы и экстремальные термофилы. Диапазон температуры для роста 60–95 ºС с оптимумом около 83 ºС; диапазон рН 4,5–7,5 с оптимумом около 6. Диапазон солености (NaCl) 0,9–3,6 %.

Бактерии рода Archaeoglobus – грамотрицательные кокковидные клетки неправильной формы, часто треугольные, одиночные или в парах, со жгутиками (монополярные политрихи) или без них. При освещении светом с длиной волны 420 нм обнаруживают голубовато-зеленую флуоресценцию. На агаризованной среде формируют зеленовато-черные гладкие колонии диаметром 1–2 мм. Способны к хемолитотрофному или хемоорганотрофному росту. Основная форма энергетического метаболизма – анаэробное дыхание (диссимиляционная сульфатредукция). Донорами электронов являются формиат, лактат, глюкоза, крахмал, белки и молекулярный водород; конечными акцепторами электронов – сульфат, сульфит и тиосульфат (но не молекулярная сера), которые восстанавливаются до сероводорода. Особенностью бактерий рода Archaeoglobus является способность в небольшом количестве образовывать метан. Подобно типичным метаногенным бактериям, в клетках бактерий рода Archaeoglobus содержится фактор F420 и тетрагидрометаноптерин, но не обнаружены кофермент М и фактор F430.

Основное местообитание–мелководные и глубоководные морские гидротермальные источники, в

которых они вызывают активное восстановление соединений серы.

Экстремальные термофилы, метаболизирующие молекулярную серу – грамотрицательные бактерии разной морфологии: кокки, палочки, диски, нити или клетки неправильной дольчатой формы. Клеточные стенки у этих бактерий состоят из гликопротеиновых или белковых

субъединиц. Цитоплазматические мембраны многослойные, содержат липиды, построенные на основе тетраэфиров глицерина. Молекула тетраэфира состоит из двух остатков глицерина, соединенных двумя одинаковыми парами С40-бифитанильных цепей, которые содержат от 1 до 4

пятичленных циклических группировок.

Все представители объединены в одну группу благодаря тому, что их энергетический метаболизм связан с метаболизмом молекулярной серы. Облигатно аэробные бактерии (например, бактерии рода Sulfolobus) осуществляют окисление S0; строгие анаэробы (например, бактерии родов Thermococcales и Thermoproteales) – только восстановление S0 до H2S; факультативные анаэробы (например, бактерии рода Acidianus) – в зависимости от условий могут окислять или восстанавливать S0.

Второй признак, объединяющий всех представителей группы, – экстремальная термофилия: нижний температурный предел роста – 60–82 ºС, верхняя граница – 95–110 ºС. Оптимальная температура для роста 80–105 ºС. Наиболее высокотемпературными представителями серозависимых архебактерий являются бактерии вида Pyrodictium occultum. Они способны расти при 110 ºС, с оптимумом при 105 ºС.

Экстремально термофильные архебактерии, метаболизирующие молекулярную серу, являются аборигенами высокотермальных кислых источников и грунтов в зонах вулканического происхождения. Кроме того, бактерии рода Pyrodictium выделяют из подводных морских горячих источников, богатых серой и сульфидами, где они проявляют активную геохимическую деятельность.

бактерии вида Sulfolobus brierley, способные выщелачивать металлы при высоких температурах из трудноокисляемых сульфидов, таких как пирит (FeS2), халько пирит (CuFeS2) и молибденит (MoS2). Эти бактерии можно использовать также для удаления серных компонентов из некондиционного каменного угля. Отрицательным моментом в деятельности этих архебактерий является их способность вызывать биокоррозию стали.

Термоацидофильные микоплазмы представлены единственным видом Thermoplasma acidophilum. В отличие от других архебактерий, эти бактерии не имеют клеточной стенки. Клетки окружены трехслойной мембраной, толщиной около 7 нм, могут быть подвижными и обладать

жгутиками.

Термоплазмы – гетеротрофы со сложными пищевыми потребностями. Хемоорганотрофы, факультативные анаэробы. Энергию получают как за счет аэробного дыхания, так и за счет брожения. Облигатные термофилы и облигатные ацидофилы. Температурный оптимум культивирования соответствует 60 ºС, а оптимум рН лежит в пределах 1,0–2,0.

При нейтральном рН происходит лизис клеток. Естественным местообитанием их служат саморазогревающиеся отходы каменного угля и кислые термальные источники.

В группу экстремально галофильных бактерий входят бактерии с разной морфологией клеток. Например, к роду Halococcus относятся грамвариабельные неподвижные кокки, к роду Halobacterium – грамположительные подвижные палочки с полярно расположенными жгутика-

ми. Грамположительные бактерии рода Haloarcula имеют форму плоских квадратных пластинок и коробочковидных клеток.

Галобактерии распространены там, где есть подходящие для этого условия: высокое содержание NaCl и других необходимых ионов, т. е. в природных соленых водоемах, в бассейнах для выпаривания соли, в белковых материалах, консервируемых с помощью соли (рыба, мясо, шкуры). Они могут расти в насыщенном растворе NaCl (около 30 %). Нижний предел концентрации соли для роста большинства видов составляет 12–15 %; оптимальное содержание – между 20 и 26 %.

Необычное строение имеют клеточные стенки галобактерий. У представителей рода Halobacterium клеточная стенка построена из регулярно расположенных гексагональных субъединиц, состоящих в основном из гликопротеинов. Клеточная стенка галобактерий рода Halococcus имеет гетерополисахаридную природу.

Цитоплазматическая мембрана галобактерий содержит липиды, в молекулах которых глицерин связан не с остатками жирных кислот, а с С20-терпеноидным спиртом – фитанолом. Помимо уникальных липидов, клеточные мембраны экстремальных галофилов включают много каротиноидных пигментов (основной – бактериоруберин), которые обусловливают окраску колоний от розового до красного цвета. Это имеет для галофилов немаловажное значение как средство защиты против избыточной радиации, поскольку для их мест обитания характерна интенсивная освещенность.

Экстремальные галофилы имеют сложные пищевые потребности. Для роста большинства видов в состав сред должны входить дрожжевой экстракт, пептон, гидролизат казеина, набор витаминов. Основным источником энергии и углерода служат аминокислоты и углеводы. Метаболизм глюкозы осуществляется по модифицированному пути Энтнера –Дудорова. Этот путь отличается у галобактерий тем, что глюкоза без фосфорилирования окисляется в глюконовую кислоту. Последняя превращается в 2-кето-3-дезоксиглюконовую кислоту, которая расщепляется на два С3-фрагмента: пировиноградную кислоту и глицериновый альдегид. Из глицеринового альдегида в результате нескольких ферментативных реакций также образуется пировиноградная кислота.

Дальнейшее ее окисление происходит в замкнутом цикле Кребса.

Основной способ получения энергии экстремальными галофилами аэробное дыхание. В цитоплазматической мембране обнаружены цитохромы b и c, а также цитохромоксидаза о. В анаэробных условиях в темноте источником энергии может служить анаэробное дыхание с использованием NO в качестве конечного акцептора электронов, а также процесс сбраживания аргинина и цитруллина. Свет служит дополнительным источником энергии, аппарат для использования которого подключается при недостатке О

Поделись с друзьями