При разработке структуры уравнения регрессии сталкиваются с явлением мультиколлинеарности. Под мультиколлинеарностью понимают взаимосвязь независимых переменных уравнения регрессии.
Пусть имеется уравнение регрессии:
= a0 + a1x1 + a2x2 . |
|
Переменные x1 и x2 могут находиться в некоторой линейной зависимости между собой. Эта зависимость может быть функциональной, тогда имеет место строгая мультиколлинеарность переменных. Чаще, однако, взаимосвязь между переменными не столь жестка и проявляется лишь приблизительно, в этом случае мультиколлинеарность называется нестрогой.
Одно из основных предположений метода наименьших квадратов заключается в том, что между независимыми переменными нет линейной связи. Нарушение этого условия будет приводить к тому, что получаемое уравнение регрессии будет ненадежным, и незначительное изменение исходных выборочных данных будет приводить к резкому изменению оценок параметров.
Для обнаружения мультиколлинеарности вычисляется матрица парных коэффициентов корреляции, охватывающая все сочетания независимых переменных. Коэффициенты, близкие по значению к ±1, свидетельствуют о наличии мультиколлинеарности между соответствующими переменными.
Устранение проблемы достигается путем пересмотра структуры уравнения регрессии.
Самый простой способ – исключение из модели одной из двух переменных, находящихся во взаимосвязи.
Поможем написать любую работу на аналогичную тему