Контент-анализ (от англ. contens содержание) — метод качественно-количественного анализа содержания документов с целью выявления или измерения различных фактов и тенденций, отраженных в этих документах. Особенность контент-анализа состоит в том, что он изучает документы в их социальном контексте. Может использоваться как основной метод исследования (например, контент-анализ текста при исследовании политической направленности газеты), параллельный, т.е. в сочетании с другими методами (напр., в исследовании эффективности функционирования средств массовой информации), вспомогательный или контрольный (напр., при классификации ответов на открытые вопросы анкет).
В разработке и практическом применении контент-анализа выделяют несколько стадий. После того, как сформулированы тема, задачи и гипотезы исследования, определяются категории анализа — наиболее общие, ключевые понятия, соответствующие исследовательским задачам. Система категорий играет роль вопросов в анкете и указывает, какие ответы должны быть найдены в тексте. В практике отечественного контент-анализа сложилась довольно устойчивая система категорий — знак, цели, ценности, тема, герой, автор, жанр и др. Все более широко распространяется контент-анализ сообщений средств массовой информации, основанный на парадигматическом подходе, в соответствии с которым изучаемые признаки текстов (содержание проблемы, причины ее возникновения, проблемообразующий субъект, степень напряженности проблемы, пути ее решения и др.) рассматриваются как определенным образом организованная структура.
Категории контент-анализа должны быть исчерпывающими (охватывать все части содержания, определяемые задачами данного исследования), взаимоисключающими (одни и те же части не должны принадлежать различным категориям), надежными (между кодировщиками не должно быть разногласий по поводу того, какие части содержания следует относить к той или иной категории) и уместными (соответствовать поставленной задаче и исследуемому содержанию). При выборе категорий для контент-анализа следует избегать крайностей: выбора слишком многочисленных и дробных категорий, почти повторяющих текст, и выбора слишком крупных категорий, т.к. это может привести к упрощенному, поверхностному анализу. Иногда необходимо принимать во внимание и отсутствующие элементы текста, которые могут быть значимыми для контент-анализа.
Важен выбор необходимых источников, подвергаемых контент-анализу. Проблема выборки содержит в себе выбор источника, количества сообщений, даты сообщения и исследуемого содержания. Все эти параметры выборки определяются задачами и масштабами исследования. Чаше всего контент-анализ проводится на годичной выборке: если это изучение протоколов собраний, то достаточно 12 протоколов (по числу месяцев), если изучение сообщений средств массовой информации — 12—16 номеров газеты или теле-, радиодней. Обычно выборка сообщений средств массовой информации составляет 200—600 текстов.
Необходимым условием является разработка таблицы контент-анализа — основного рабочего документа, с помощью которого проводится исследование. Тип таблицы определяется этапом исследования. Например разрабатывая категориальный аппарат, аналитик составляет таблицу, представляющую собой систему скоординированных и субординированных категорий анализа. Такая таблица внешне напоминает анкету: каждая категория (вопрос) предполагает ряд признаков (ответов), по которым квантифицируется содержание текста. Для регистрации единиц анализа составляется другая таблица — кодировальная матрица. Если объем выборки достаточно велик (свыше 100 единиц), то кодировщик, как правило, работает с тетрадью таких матричных листов. Если выборка невелика (до 100 единиц), то можно проводить двумерный или многомерный анализ. В этом случае для каждого текста должна быть своя кодировальная матрица. Эта работа трудоемка и кропотлива, поэтому при больших объемах выборки сопоставление интересующих исследователя признаков осуществляется на компьютере.
Важным условием контент-анализа является разработка инструкции кодировщику — системы правил и пояснений для того, кто будет собирать эмпирическую информацию, кодируя (регистрируя) заданные единицы анализа. В инструкции точно и однозначно излагается алгоритм действий кодировщика, дается операциональное определение категорий и единиц анализа, правила их кодирования, приводятся конкретные примеры из текстов, являющихся объектом исследования, оговаривается, как следует поступать в спорных случаях, и т.д. Процедура подсчета при количественном контент-анализе в общем виде аналогична стандартным приемам классификации по выделенным группировкам ранжирования и измерения ассоциации. Существуют также специальные процедуры подсчета применительно к контент-анализу.
Поможем написать любую работу на аналогичную тему