Солнечные водоподогреватели (гелиоводоподогреватели). Преобразование солнечной энергии в тепловую обеспечивается за счет способности атомов вещества поглощать электромагнитное излучение. При этом энергия электромагнитного излучения преобразуется в кинетическую энергию атомов и молекул вещества, т.е. в тепловую энергию. Результатом этого является повышение температуры. Для энергетических целей наиболее распространенным является использование солнечного излучения для нагрева воды в системах отопления и горячего водоснабжения.
Энергетическая программа РБ до 2010 года предусматривает крупносерийное производство гелиоводоподогревательных установок, разработанных белорусскими учеными. Основным элементов солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости.
Подогреватели воздуха. Солнечное излучение можно использовать для подогрева воздуха, просушивания зерна, для обогрева зданий. На обогрев зданий в странах с холодным климатом расходуется до половины энергетических ресурсов. Специально спроектированные или перестроенные здания для использования солнечного тепла позволяют сэкономить значительные количества топлива. Поскольку теплопроводность воздуха намного ниже, чем воды, передача энергии от приемной поверхности к теплоносителю (воздуху) происходит намного слабее. Поэтому нагреватели такого типа чаще всего изготавливают с шероховатыми (для турбулизации потока) и имеющими большую площадь приемными поверхностями (для увеличения поверхности теплообмена).
Концентраторы солнечной энергии (солнечные коллекторы). Концентрирующий коллектор включает в себя приемник, поглощающий излучение и преобразующий его в какой-либо другой вид энергии, и концентратор, который представляет собой оптическую систему, собирающую солнечное излучение с большой поверхности и направляющую его на приемник. Обычно концентратор постоянно вращается для обеспечения ориентации на Солнце. Чаще всего он представляет собой зеркало параболической формы, в фокусе которого располагается приемник излучения.
Солнечные системы для получения электроэнергии (солнечные электростанции). Концентрация солнечной энергии позволяет получать температуры до 700° С, которой достаточно для работы теплового двигателя. Например, параболический концентратор с диаметром зеркала 30 м позволяет сконцентрировать мощность излучения порядка 700 кВт, что дает возможность получить до 200 кВт электроэнергии. Для создания солнечных электростанций большой мощности (порядка 10 МВт) возможны два варианта: рассредоточенные коллекторы и системы с центральной солнечной башней.
Прямое преобразование солнечной энергии в электрическую (фотоэлектрические преобразователи) становится возможным при использовании такого физического явления, как фотоэффект.
Фотоэффектом называются электрические явления, происходящие при освещении вещества светом, а именно: выход электронов из металлов (фотоэлектрическая эмиссия, или внешний фотоэффект); перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект); изменение электрической проводимости (фотопроводимость).
При освещении границы раздела полупроводников с различными типами проводимости (р – п) между ними устанавливается разность потенциалов (фотоЭДС). Это явление называется вентильным фотоэффектом на котором основано создание фотоэлектрических преобразователей энергии (солнечных элементов и батарей). Наиболее распространенным полупроводником, используемым для создания солнечных элементов, является кремний.
Гелиоэнергетика – солнечная энергетика, во всем мире развивается быстрыми темпами и в самых разных направлениях
Поможем написать любую работу на аналогичную тему