Нужна помощь в написании работы?

Химией называют науку о химических элементах и их соединениях. Любое вещество состоит из химических элементов и их соединений. Свойства вещества определяются:

ü его элементным и молекулярным составом;

ü структурой его молекул;

ü термодинамическими и кинетическими условиями, в которых вещество находится в процессе химической реакции;

ü  уровнем химической организации вещества.

История развития химических концепций начинается с древних времен. Демокрит, Эпикур и другие представители древней натурфилософии высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качественное различие. Аристотель и Эмпедокл объясняли все видимое разнообразие тел природы с антиатомистических позиций: они считали, что в телах сочетаются различные элементы-стихии или элементы-свойства: тепло и холод, сухость и влажность. Подобное учение об элементах-свойствах было развито в алхимии. Однако ни идеи Демокрита об атомах, ни представления Эмпедокла об элементах-стихиях не нашли применения ни в металлургии, ни в стеклоделии, ни в гончарном ремесле.

Первый по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627- 1691). Результаты экспериментальных исследований Р. Бойля показали, что качества и свойства тел зависят от того, из каких материальных элементов они состоят. Возникшее таким образом учение о составе вещества существует и сегодня и продолжает развиваться на качественно новом уровне. Учение о составе  вещества занимало монопольное положение вплоть до 30-40-х годов Х1Х века. К тому времени мануфактурная стадия производства с ручной техникой и ограниченным ассортиментом сырья сменялась фабричной стадией с машинной техникой и широкой сырьевой базой. В химическом производстве стала преобладать переработка огромных масс веществ растительного и животного происхождения, качественные разнообразия которых потрясающе велики - сотни тысяч химических соединений, а состав крайне однообразен - лишь несколько элементов-органогенов: углерод, водород, кислород, сера, фосфор. Объяснения необычайно широкому разнообразию органических соединений при столь однообразном их элементном составе стали искать не только в их составе, но и в структуре молекул.

О формировании химической картины мира можно говорить с того момента, как Д.И. Менделеев доказал, что химические элементы можно выстроить в систему в зависимости от атомной массы (атомного веса, как именовал его сам Менделеев) элемента и на основании этого предположения разработал периодический закон химических элементов (1969). Более поздние исследования показали, что место элемента в периодической системе определяется не просто порядковым номером, а зарядом атомного ядра. Это означает, что не атомная масса, а именно заряд ядра обеспечивает индивидуальность химического элемента. В этой связи можно утверждать, что химический элемент - это совокупность атомов, обладающих одинаковым зарядом ядра.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828-1886) была создана теория химического строения вещества -  возник более высокий уровень развития химических знаний - структурная химия.

Период становления структурной химии иногда называют, "триумфальным маршем органического синтеза". В этот период зарождалась технология органических веществ. Были получены всевозможные красители для тканей, препараты для фармации, искусственный шелк и т.п. Интенсивное развитие автомобильной промышленности, авиации, энергетики и приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения таких материалов концепций о составе и структуре вещества было недостаточно.

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывалось изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. Такое учение способствовало организации многотоннажного производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений - на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

В 1960- 1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т.е. принцип применения химического опыта высокоорганизованной живой природы. Если биологи к тому времени широко использовали эволюционную теорию Дарвина, то химики не проявляли активного интереса к происхождению видов, составляющему сущность эволюционной теории. Не без оснований считалось, что получение любого нового химического вещества всегда было делом рук и достоянием разума человека: молекулы нового химического соединения консервировались по законам структурной химии из атомов и атомных групп, как здание строится из кирпичей или блоков. Живые же организмы подобным образом собрать нельзя. Но, несмотря на это, назревали эволюционные проблемы и для химических объектов, связанные с самопроизвольным (без участия человека) синтезом новых химических соединений - более сложных и высокоорганизованных продуктов по сравнению с исходными веществами. В этой связи эволюционную химию считают предтечей биологии - наукой о самоорганизации и саморазвитии химических систем.

Истоки эволюционной химии уходят в далекое прошлое. Они связаны с давнишней мечтой химиков - освоить опыт лаборатории живого организма и понять, как из неорганической материи возникает органическая, а вместе с нею и жизнь. Первым ученым, осознавшим важность исключительно высокой упорядоченности, организованности и эффективности процессов в живых организмах, был один из основателей органической химии, шведский ученый Якоб Берцелиус (1779- 1848). Именно он впервые установил, что основой лаборатории живого организма является катализ, а точнее, биокатализ. Идеально совершенные превращения посредством катализа способна производить лаборатория живого организма - так считали немецкий ученый Ю. Либих (1803-1873), французский естествоиспытатель М. Бертло (1827- 1907) и многие другие химики XIX в.

Химический анализ живой природы остается актуальным и по сей день. Предполагается, что, используя принципы химии организмов, можно построить совершенно новую химию, основанную на необычном управлении химическими процессами. Будут созданы аналогичные катализаторы, далеко превосходящие промышленные аналоги последнего времени. Тогда станет возможным преобразование солнечной энергии с большим коэффициентом полезного действия в другие виды энергии: химическую, электрическую, тепловую. Возможно, сочетание биохимической энергетики с синтезом полимерных материалов приведет к созданию такой макромолекулы, которая подобно нашим мышцам будет способна превратить химическую энергию в механическую. Интенсивные исследования последнего времени направлены на выяснение как материального состава растительных и животных тканей, так и химических процессов, происходящих в организме. Такие по содержанию исследования проводят и химики-органики, и биохимики, и даже медики. При этом, решая одни и те же задачи, они ставят разные цели. Химиков-органиков интересуют перспективы создания более сложных веществ путем конструирования их молекул для реализации возможностей синтеза аналогов органических соединений, образующихся в живых организмах. Биологи преследуют цель изучения субстратной и функциональной основ жизнедеятельности организмов. Медики стремятся выяснить границы между нормой и патологией в организмах. Объединяет все эти исследования идея о ведущей роли ферментов или, в более широком смысле, биорегуляторов в процессе жизнедеятельности. Эта идея, впервые предложенная великим французским естествоиспытателем Луи Пастером (1822- 1895), остается основополагающей и по сей день при изучении химии живой природы в рамках динамической биохимии, основной предмет которой - химические процессы, происходящие в живом организме. В то же время изучением молекулярного состава и структуры ткани живого и неживого организма занимается статическая биохимия.

Динамическая биохимия родилась на рубеже XVIII и XIX столетий, когда начали различать процессы дыхания и брожения, ассимиляции и диссимиляции как некие превращения живого вещества. История исследования брожения включает не только определенные этапы познания действительности, но и трудности проникновения в тайны живого: веру в жизненную силу, надежды Берцелиуса на особые функции катализа в жизнедеятельности организмов, упрощенные представления "чистых химиков" - Либиха и Бертло о брожении как действии обычных химических сил, гениальные предвидения Пастера о различиях между бесклеточным брожением и ферментом живой деятельности дрожжевых клеток и, наконец, открытие белковой основы ферментов и их глубокой дифференциации, а вслед за этим, участия на различных стадиях брожения различных ферментов. Исследование брожения составляет основной предмет ферментологии - стержневой отрасли знаний о процессах жизнедеятельности. На протяжении весьма длительной истории исследования процесс биокатализа рассматривался с двух разных точек зрения:

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

ü одной из них, условно названной химической, придерживались Ю. Либих и М. Бертло;

ü другой - биологической - Л. Пастер.

В химической концепции весь биокатализ сводился к обычному химическому катализу. Несмотря на упрощенный подход в рамках этой концепции были установлены важные положения: аналогия между биокатализом и катализом, между ферментами и катализаторами; наличие в ферментах двух неравноценных компонентов - активных центров и носителей; заключение о важной роли ионов переходных металлов и активных центров многих ферментов; вывод о распространении на биокатализ законов химической кинетики; сведение в отдельных случаях биокатализа к катализу неорганическими агентами.

В начале развития биологическая концепция не располагала столь обширными экспериментальными подтверждениями. Ее основной опорой были труды Л. Пастера и, в частности, его прямые наблюдения за деятельностью молочнокислых бактерий, которые позволили выявить брожение и способность микроорганизмов получать необходимую им энергию для жизнедеятельности путем брожения. Из своих наблюдений Пастер сделал вывод об особом уровне материальной организации ферментов. Однако все его доводы, если и были не опровергнуты, то, по крайней мере, отодвинуты на задний план после открытия внеклеточного брожения, а позиция Пастера была объявлена виталистической, признающей наличие в организмах нематериальной, сверхъестественной силы. Однако с течением времени концепция Пастера победила. О перспективности данной концепции свидетельствуют современные эволюционный катализ и молекулярная биология. С одной стороны, установлено, что состав и структура биополимерных молекул представляют собой единый набор для всех живых существ, вполне доступный для исследования физических и химических свойств - одни и те же физические и химические законы управляют как абиогенными процессами, так и процессами жизнедеятельности.

С другой стороны, доказана исключительная специфичность живого, проявляющаяся не только в высших уровнях организации клетки, но и в поведении фрагментов живых систем на молекулярном уровне, на котором отражаются закономерности других уровней.

Специфичность молекулярного уровня живого заключается в существенном различии принципов действия катализаторов и ферментов, в различии механизмов образования полимеров и биополимеров, структура которых определяется только генетическим кодом и, наконец, в своем необычном факте: многие химические реакции окисления-восстановления в живой клетке могут происходить без непосредственного контакта между реагирующими молекулами. А это означает, что в живых системах могут происходить такие химические превращения, которые не обнаруживались в неживом мире.

                 

Химические основы жизни.

Напомним, что понятие "самоорганизация" означает упорядоченность существования материальных динамических, т. е. качественно изменяющихся систем. В отличие от понятия "организация" оно отражает особенности существования динамических систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности, или материальной организации.

Существуют два подхода к проблеме самоорганизации предбиологических систем, которые все чаще обсуждаются в естественнонаучной и философской литературе:

ü субстратный;

ü функциональный.

К субстратному подходу относят теорию происхождения жизни с вполне определенными особенностями вещественной основы биологических систем, т. е. со строго определенным составом элементов-органогенов и не менее определенной структурой входящих в живой организм химических соединений. Рациональный результат субстратного подхода к проблеме биогенеза - накопленная информация об отборе химических элементов и структур.

В настоящее время известно более ста химических элементов. Большинство из них попадает в те или иные живые организмы и, так или иначе, участвует в их жизнедеятельности.

Основу живых систем составляют только шесть элементов, давно получивших наименование органогенов:углерод, водород, кислород, азот, фосфор и сера (их общая весовая доля в организмах составляет 97,4%).

За ними следуют 12 элементов, входящих в состав многих физиологически важных компонентов биосистем: натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт (их весовая доля в организмах примерно 1,6%).

Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере питательной средой). Их доля в организмах составляет около 1%. Участие всех остальных элементов в построении биосистем практически не зафиксировано.

Картина химического мира весьма отчетливо свидетельствует об отборе элементов. К настоящему времени известно около 8 млн. химических соединений. Из них подавляющее большинство (около 96%) - органические соединения, основной строительный материал которых - все те же 6-18 элементов. И как ни парадоксально, из всех остальных 95- 99 химических элементов природа (по крайней мере, на Земле) создала лишь около 300 тыс. неорганических соединений.

Столь резкая диспропорция между едва обозримым множеством органических соединений и каким-то минимумом составляющих их органогенов так же, как и исключительно дифференцированный отбор того же минимума элементов для построения живых систем, нельзя всецело объяснить факторами различной распространенности элементов в космосе и на Земле. В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматривать только как дополнение к ним.

На Земле наиболее распространены: железо, кислород, кремнии, магний, алюминий, кальций, натрий, калий, никель, тогда как углерод занимает лишь 16-е место. В атмосфере Земли углерода не более 0,01 весового процента, в океанах - около 0,002, в литосфере - 0,1. Углерод в литосфере Земли распространен в 276 раз меньше, чем кремний, в 88 раз меньше, чем алюминий, и даже в 6 раз меньше, чем относительно редкий титан. Из органогенов наиболее распространены лишь кислород и водород. Распространенность же углерода, азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и, в общем, невелика - всего около 0,24 весовых процента. Следовательно, геохимические условия не играют сколько-нибудь  существенной роли в отборе химических элементов при формировании  органических систем, а тем более биосистем. Определяющими факторами здесь выступают требования соответствия между строительным материалом и объектами с высокоорганизованной структурой.

С химической точки зрения такие требования сводятся к отбору элементов, способных к образованию, во-первых, достаточно прочных и, следовательно, энергоемких химических связей и, во-вторых, связей лабильных, т. е. легко подвергающихся гомолизу, гетеролизу или циклическому перераспределению. Вот почему углерод выделен из многих других элементов как органоген № 1:

ü Этот элемент отвечает всем требованиям  химической лабильности;

ü Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовать их единство, выступать в качестве носителя внутреннего противоречия;

ü Атомы углерода в одном и том же соединении способны выполнять роль и акцептора, и донора электронов. Они образуют почти все типы связей, какие знает химия.

Подобно тому, как из всех химических элементов только шесть органогенов да 10-15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции шел тщательный отбор и химических соединений. Из миллионов органических соединений в построении живого организма участвуют лишь несколько сотен; из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. Удивительно, что из такого узкого круга отобранных природой органических веществ составлен трудно обозримый, многообразный мир животных и растений. Полагают, что когда период химической подготовки - период интенсивных и разнообразных превращений  сменился периодом биологической эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств того, что аминокислотный состав гемоглобина самых низших позвоночных и человека практически один и тот же; более или менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т. д.

Каким образом проводилась та химическая подготовка, в результате которой из минимума химических элементов и минимума химических соединений образовался сложнейший высокоорганизованный комплекс - биосистема? Химику важно это понять для того, чтобы научиться у природы так легко и просто приспосабливать для своих нужд «менее организованные материалы», например: синтезировать сахар, получать стереоспецифические соединения и т. п.

В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. К примеру, фрагмент эволюционных систем - развитая полимерная структура типа РНК и ДНК, выполняющая важные  функции передачи наследственной информации.

Заслуживает внимания ряд выводов, полученных самыми различными путями и в  различных областях науки (геологии, геохимии, космохимии, биохимии, термодинамике, химической кинетике).  На ранних стадиях химической эволюции мира катализ вообще отсутствовал. Условия высоких температур (выше 5000°К), электрических разрядов и радиации препятствовали образованию конденсированного состояния. Первые проявления катализа начинались при смягчении условий (при температуре ниже 5000° К) и образовании первичных твердых тел. Роль катализатора возрастала по мере того, как физические условия (главным образом температура) приближались к земным. Но роль катализа вплоть до образования более или менее сложных органических молекул оставалась несущественной. Появление таких относительно несложных систем, как аминокислоты и первичные сахара, было своеобразной некаталитической подготовкой старта для большого катализа. Роль катализа в развитии химических систем после достижения стартового состояния, т. е. известного количественного минимума органических и неорганических соединений, начала возрастать сравнительно быстро. Отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических способов и обладали широким каталитическим спектром.

Отличительная черта второго - функционального подхода – к проблеме предбиологической эволюции состоит в сосредоточении внимания на исследовании процессов самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы. Среди естествоиспытателей такого подхода придерживаются преимущественно физики и математики, рассматривающие эволюционные процессы с позиций кибернетики. Крайняя точка зрения - утверждение о полном безразличии к материалу эволюционных систем: живые  системы, вплоть до интеллекта, могут быть смоделированы даже из металлических систем.

Поделись с друзьями
Добавить в избранное (необходима авторизация)