Нужна помощь в написании работы?

Одним из важных следствий специальной теории относительности является то, что пространство переплетено со временем, поэтому в действительности следует говорить не об одном только пространстве, а о пространстве-времени. В то же время пространство, доступное нашему непосредственному восприятию, с полной очевидностью и неизменностью остаётся трёхмерным. Если четвёртое измерение пространства существует, то где же оно? Наглядно представить мир, имеющий четыре измерения, можно попытаться, представив плоский мир с двумя измерениями. Будучи трёхмерными существами, мы видим, что этот плоский мир как бы вложен в третье измерение, но для двумерных существ представить это так же невозможно, как нам представить четвёртое.

Развивая этот ход мысли дальше, можно предположить, что четыре измерения пространства-времени «вложены» во Вселенную, имеющую пять и более число измерений. Математики уже давно обобщили законы геометрии на случай пространства с произвольным числом измерений. Почему природа выбрала и, можно сказать, выделила именно число три? Оказывается, можно найти этому объяснение, но, разумеется, не следует забывать, что это объяснение принадлежит нам - трёхмерным существам.

Математические решения показывают, что в пространстве с n измерениями мы приходим к универсальным законам обратной степени n-1. То есть в трёхмерном пространстве n-1=2 и справедлив закон «обратных квадратов». Если бы, например, гравитационное поле Солнца действовало на планеты по закону «обратных кубов», то планеты, двигаясь по спиральным траекториям, быстро упали бы на Солнце. В атомном мире у электронов не было бы устойчивых орбит, если бы пространство имело больше трёх измерений. Распространение волн также невозможно в пространстве с чётным числом измерений, например, двумерном. Сказанное не означает, что невозможно пространство с другим числом измерений, но физические законы в этих мирах принципиально отличались бы от законов нашего мира.

В XIX веке Н. И. Лобачевский, изучая проблему пятого постулата в геометрии Евклида, пришел к выводу о том, что при определённых условиях прямые, которые кажутся нам параллельными, могут пересекаться. Цель его состояла в том, чтобы построить геометрию на основе новой системы аксиом и постулатов. Реализация этой программы привела Лобачевского к открытию неевклидовой геометрии. Лобачевский сделал величайшее открытие, но современники, даже крупные ученые, его не только не поняли, но заняли враждебную позицию. Позднее исследование Лобачевского явилось толчком к построению неевклидовых геометрий.

Стало ясно, что геометрий как логических систем может быть построено много и только опыт способен решить, какая из них реализуется в окружающем нас мире. На современном математическом языке структура геометрии полностью задается выражением квадрата расстояния между соседними бесконечно близкими точками. В декартовых координатах евклидова пространства квадрат такого расстояния имеет вид:

dl2 = dx2 + dy2 + dz2,

где dx, dy, dz - дифференциалы координат.

По сути дела, это не что иное, как теорема Пифагора для случая трехмерного пространства, если бы мы исходили из аксиом и постулатов Евклида. Это равенство можно положить в основу определения евклидовой геометрии.

Евклидова геометрия обладает важнейшим свойством: в ней всегда можно ввести во всем пространстве глобальные декартовы координаты. Это означает, что евклидово пространство «плоское», или, иными словами, кривизна в каждой его точке равна нулю.

Неевклидовы геометрии - это такие геометрии, в которых постулат о параллельных прямых заменён другим постулатом. При этом возможны два различных случая.

В первом случае, называемом эллиптической геометрией, говорится, что на поверхности через данную точку, расположенную вне заданной линии, не может быть проведено ни одной параллельной ей линии. Поверхность сферы представляет собой грубую неточную модель неевклидовой поверхности такого типа. «Наиболее прямой» линией на сфере является круг с диаметром, равным диаметру сферы. Все большие круги пересекаются друг с другом, и поэтому невозможно, чтобы два больших круга были параллельны. Говорят, что неевклидовая поверхность этого типа имеет положительную кривизну. Такая кривизна приводит к тому, что поверхность замыкается сама на себя. Она имеет конечную, а не бесконечную площадь.

Неевклидова геометрия, называемая гиперболической - это такая геометрия, в которой постулат о параллельных прямых заменён постулатом о бесконечном множестве параллельных, которые можно провести через точку на поверхности, расположенную вне данной линии. Грубой моделью поверхности такого типа является седловидная поверхность. Говорят, что такая поверхность имеет отрицательную кривизну. Она не замыкается сама на себя. Подобно евклидовой плоскости она тянется до бесконечности во всех направлениях.

И эллиптическая и гиперболическая геометрии представляют собой геометрии поверхностей постоянной кривизны. Это означает, что кривизна везде одна и та же, объекты не претерпевают искажений при переходе из одной точки в другую.

Существует неевклидова геометрия общего типа, обычно называемая римановой геометрией, это такая геометрия, в которой кривизна может меняться от точки к точке любым заданным способом.

Она была получена Б. Риманом, который, развивая идею Н. И. Лобачевского и К. Ф. Гаусса, ввёл особый класс геометрий, получивший название «римановых», которые только в бесконечно малой области совпадают с евклидовыми геометриями. Б. Риман обобщил также фундаментальное понятие кривизны пространства. В пространстве римановой геометрии не существует единых декартовых координат. Это означает, что кривизна в римановом пространстве всегда отлична от нуля, а её значение зависит от точки пространства.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Какая же геометрия имеет место в природе? Ответ на этот вопрос можно получить лишь на основании опыта, то есть путем изучения явлений природы. Пока мы имели дело с относительно малыми скоростями, опыт подтверждал что геометрия нашего пространства евклидова. А такие понятия, как «длина» и «время», абсолютны и не зависят от системы отсчета.

Изучение электромагнитных явлений, а также движения частиц со скоростями, близкими к скорости света, привело к удивительному открытию:

  • пространство и время образуют единый континуум; роль расстояния между двумя близкими точками (событиями) играет величина, называемая интервалом.

Квадрат интервала в декартовых координатах определяется равенством:

ds2 = c2dT2 – dx2 – dy2 – dz2,

где c - скорость света; T - время.

Геометрия, определяемая таким интервалом, называется псевдоевклидовой, а четырехмерное пространство с такой геометрией – «пространством Минковского». Квадрат интервала ds2 может быть величиной положительной, отрицательной или равной нулю.

Время и координаты входят в интервал почти равноправно (в квадрате) с той лишь принципиальной разницей, что у них разные знаки. В этом находит отражение глубокое различие таких физических понятий, как «длина» и «время». Величина интервала не зависит от системы отсчета, тогда как время и длина уже не являются абсолютными понятиями, они относительны и зависят от выбора системы отсчета.

Интервал ds2 имеет одинаковый вид в бесконечном классе систем отсчета, движущихся одна относительно другой с постоянной скоростью, меньшей скорости света. Такие системы отсчета являются инерциальными, ибо в них выполняется закон инерции. Преобразования от одной инерциальной системы к другой, сохраняющие вид интервала, называются преобразованиями Лоренца. Теорию, сформулированную в классе инерциальных систем отсчета на основе интервала ds2, А. Эйнштейн назвал специальной теорией относительности.

Поделись с друзьями