Нужна помощь в написании работы?

Как показали работы школы И. Пригожина, важнейшей общей чертой широкого класса процессов самоорганизации является потеря устойчивости и последующий переход к устойчивым диссипативным структурам. В точке изменения устойчивости должно возникнуть по меньшей мере два решения, соответствующих устойчивому, близкому к равновесному состоянию и диссипативной структуре.

Это структуры, образующиеся в результате рассеяния энергии. Бельгийская школа И. Пригожина развивает термодинамический подход к самоорганизации. Основное понятие синергетики Хакена (понятие структуры как состояния, возникающего в результате когерентного (согласованного) поведения большого числа частиц) бельгийская школа заменяет более специальным понятием диссипативной структуры. В открытых системах, обменивающихся с окружающей средой потоками вещества или энергии, однородное состояние равновесия может терять устойчивость и необратимо переходить в неоднородное стационарное состояние, устойчивое относительно малых возмущений. Такие стационарные состояния получили название диссипативных структур.

При самоорганизации диссипативных структур энтропия может, как возрастать, так и убывать. Противоречий со вторым началом термодинамики не возникает, так как уменьшение энтропии в диссипативных структурах за счёт компенсирующего процесса рядовое явление, не противоречащее законам природы.

Исследования школы И. Пригожина показали, что понятия структурной устойчивости и порядка через флуктуации применимы к системам различной природы, в том числе экономическим, социальным. Пределов для структурной устойчивости не существует. Неустойчивости могут возникать в любой системе, стоит лишь ввести подходящие возмущения.

В синергетике понятие диссипативной структуры отражает именно устойчивые результаты самоорганизации. Понятие структурной устойчивости, играющее важную роль в теории самоорганизации, открывает большие возможности для рассмотрения диссипативных структур как органического целого.

Дело в том, что образование таких структур не зависит ни от разброса в начальных условиях, ни (коль скоро они уже образовались) от флуктуаций значений параметров. Например, «все свойства автоволны в возбужденной среде полностью определяются лишь характеристиками самой среды», скорость, амплитуда и форма автоволны не зависят от начальных условий, система как бы «забывает» их. Математически это может выражаться возникновением так называемого предельного цикла для траектории в фазовом пространстве решений соответствующих уравнений, т. е. со временем любая начальная точка в фазовом пространстве приближается к одной и той же периодической траектории.

Это означает, что диссипативная структура способна к самовоспроизведению. Возникновение предельных циклов - не единственная форма поведения систем в «закритической» области их существования. Но в любом случае устойчивые диссипативные структуры характеризуются периодичностью своего поведения. Так, автокаталитические химические реакции, играющие важную роль в жизнедеятельности организма, имеют циклический характер. Известна, например, модель Эйгена, в основе которой лежит идея перекрестного катализа: «Нуклеотиды производят протеины, которые в свою очередь производят нуклеотиды. Возникает циклическая схема реакций, получившая название гиперцикла. Когда гиперциклы конкурируют, они обнаруживают способность, претерпевая мутацию и редупликацию, усложнять свою структуру».

Таким образом, диссипативные структуры можно рассматривать как органическое целое, воспроизводящее условия своего существования во взаимодействии со средой и способное к саморазвитию.

Возникает вопрос: достаточна ли степень устойчивой целостности, которая свойственна диссипативным структурам как органическому целому, для того, чтобы послужить основой возникновения структур более высокого уровня организации? В известном смысле - да, в качестве частей, выполняющих определенную функцию в целом.

Мы уже упоминали о том, какие функции выполняют автоволновые процессы в развитом организме; понятие диссипативной структуры успешно применяется при синергетическом описании процессов морфогенеза, т. е. конкретного становления живого организма, формирования им своих частей. Но в этом случае речь идет скорее о воспроизведении известного целого, чем о становлении принципиально новой целостности, для которой целые предшествующего уровня развития выступают лишь как элементы, из которых новая становящаяся целостность уже может формировать себе части. Но для того чтобы выступить в качестве элемента, система должна обладать особенно высоким уровнем устойчивой целостности для чего ей необходимо преобразовать в форму поступательного развития случайности, являющиеся необходимым условием функционирования диссипативных структур.

Поделись с друзьями