Нужна помощь в написании работы?

Так называется наука, которая заняла видное место в физике в 1920-х гг. Под квантовой механикой мы понимаем здесь нерелятивистскую квантовую теорию, изучающую законы движения микрочастиц при скоростях, гораздо меньших скорости света. Эти законы «работают» в основном на атомных масштабах расстояний, однако в некоторых случаях проявляются и в макромире. Можно назвать несколько квантовых явлений, которые наблюдаются почти без приборов, — сверхпроводимость, лазерный свет, магнитное упорядочение атомов ферромагнетика и др. Хотя эта наука уже полностью разработана, ее законы до сих пор непривычны для людей.

Рассказывая о сверхпроводимости, нужно обязательно вступать в царство квантовой механики. Без этого обойтись нельзя, так как само явление сверхпроводимости существенно квантовое, и его не удавалось понять, пока не было в основном завершено построение квантовой механики.

    Для того чтобы придать механизму сверхпроводимости наглядность, надо рассматривать поведение электронов в кристаллах.

Если бы это были частицы, подчиняющиеся обычной механике, то было бы удобно уподобить их бильярдным шарам.

    Бильярдный шар находится где-то на бильярдном столе, он движется с какой-то скоростью. Мы привыкли, что его положение, скорость и энергия могут быть любыми, уж во всяком случае, они никак не зависят от размеров бильярдного стола и высоты его бортов. Попробуем устроить на бильярде «твердое тело» — расставим шары правильными рядами. Это будет «кристаллическая решетка», шары изображают тяжелые атомные остовы. Атомные остовы, или ионы, действительно намного тяжелее электрона. Напомним, что каждый протон и нейтрон, из которых составлено ядро атома, почти в 2000 раз тяжелее электронов.

    Теперь пустим на бильярдный стол небольшой шарик, который будет сталкиваться с большими шарами. При этом энергия почти не будет теряться, если отношение их масс велико. Будем считать, что движение маленького шарика тормозится только за счет трения о сукно стола. И трение, и столкновения с большими шарами важны для понимания поведения электрона в кристалле. Конечно, в кристалле и то и другое свойство относятся к рассеянию электрона на ионах. При столкновении электрона с ионом изменяется направление его движения (как и при столкновении большого шара с очень маленьким). И те же столкновения обеспечивают «трение» — потерю энергии (трение о сукно).

    Однако и после этого разъяснения «бильярдная» модель твердого тела вызывает недоумение. Решетка из больших бильярдных шаров отнюдь не кажется удобным «сосудом», «трубой» для движения шариков электронов. Попробуйте «включить ток» — толкнуть «электрон» сквозь «решетку». Если в «решетке» достаточно много шаров, протолкнуть электрон будет очень нелегко, сколько бы ни вмешиваться в его движение. Конечно, опытный игрок сможет пустить электрон точно между рядами шаров, но в металлическом кристалле ток течет отнюдь не только вдоль граней!

Таким образом, эта модель не годится для описания твердого тела.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями