Нужна помощь в написании работы?

Приборы квантовой электроники имеют ряд характерных особенностей, отличающих их от электронных приборов других типов. Так молекулярные генераторы СВЧ диапазона обладают исключительно высокой стабильностью частоты колебаний ~10-13 (например, часы на основе такого генератора "уйдут" на 3 секунды за 1 млн. Лет). Квантовые парамагнитные усилители СВЧ имеют рекордно низкий уровень собственных шумов (не св. 10 К) по сравнению с усилителями других типов и поэтому применяются в устройствах радиоастрономии, системах дальней космической связи. На основе лазеров возникли новые области науки и техники: нелинейная оптика, лазерная химия, лазерная технология, голография, лазерная медицина, лазерная интерферометрия и др. Мощный направленный лазерный пучок, сфокусированный на поверхности любого вещества, способен расплавить и испарить его. Это явление лежит в основе многих технологических применений лазеров. Лазерный луч служит незаменимым инструментом интерферометрических измерений с высокой точностью, примерно сравнимой с размерами атомов и молекул. Способность активной среды некоторых лазеров накапливать энергию возбуждения и затем излучать её в виде короткого (10-7-10-9) импульса с недостижимой прежде мощностью (109-1010Вт) легла в основу лазерной импульсной локации и дальнометрии. Чрезвычайно малая расходимость лазерного излучения (примерно на 4 порядка меньше, чем у СВЧ излучения при сравнимых диаметрах антенных систем) делает возможным его передачу на огромные расстояния, недостижимые для радиолокации. Инжекционные ПП лазеры, непосредственно преобразующие электрический ток в когерентное оптическое излучение, являются самыми миниатюрными приборами квантовой электроники, на основе которых развиваются такие важные направления электроники, как оптоэлектроника, системы записи и считывания информации.

    Лазеры активно вторглись в технологию современной микроэлектроники (процессы подгонки резисторов, контроля микросхем, скрайбирования и отжига кремниевых пластин, фотолитографии и т. д.). Лазеры получили применение и в военном деле.

    Промышленность выпускает различные типы лазеров, которые используются не только как эффективный инструмент научных исследований, но и для решения разного рода практических задач. Основные преимущества лазерного воздействия — малая область распространения тепла, отсутствие переноса электрических зарядов и механического контакта, возможность работать внутри вакуумных баллонов и в агрессивных газах.

    Одним из первых применений лазеров было измерение расстояния до Луны с большей точностью, чем это было сделано радиофизическим методом. После того как на Луне был установлен уголковый отражатель, расстояние до неё было измерено с точностью до 1,5 м. Существует лазерная локационная служба расстояния Земля — Луна.

    Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний, детектирования, гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.

    Возникла нелинейная оптика, изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света (самофокусировка света, генерация оптических гармоник, вынужденное рассеяние света, параметрическая генерация света, самопросветление или самозатемнения света). Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 1014 вт/см2 все известные вещества разрушаются лазерным лучом и превращаются в плазму.

    Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением.

    Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. Квантовая электроника привела к развитию голографии — метода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.

    Производство приборов квантовой электроники в промышленно развитых странах сформировалось в крупную отрасль промышленности.

    Квантовая механика - волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

    Законы квантовой механики  составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

    Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений.

    Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников).

    Только на основе квантовой механики  удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы квантовой механики  непосредственно проявляются в поведении макроскопических объектов.

     Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения. Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере "инженерной" наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

    Сегодня физики твердо верят в то, что наш мир един и познаваем. Все разнообразие природных явлений просто обязано описываться в рамках некоего единого универсального подхода. Другое дело, что человек пока еще не до конца сумел понять глубинную сущность законов природы и пределы познаваемости мира.

    Однако большинство физиков убеждены в том, что, если идти по пути, указанном квантовой механикой и квантовой теорией поля, будет открыт тот самый свод законов и правил, который и правит нашим удивительно красивым миром.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Поделись с друзьями