Нужна помощь в написании работы?

В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Эта задача рассматривается как одна из наиболее важных в подготовке детей к вычислительной деятельности.

Детей знакомят не только с разложением числа на 2 меньших, но и с получением числа из 2 меньших чисел. Это способствует пониманию детьми особенностей суммы как условного объединения 2 слагаемых.

Детям показывают все варианты состава чисел в пределах пятка.

Число 2 — это 1 и 1,

3 — это 2 и 1, 1 и 2,

4 — это 3 и 1, 2 и 2, 1 и 3,

5 — это 4 и 1, 3 и 2, 2 и 3, 1 и 4.

ПОДГОТОВИТЕЛЬНАЯ РАБОТА: операции с множествами предметов, создание множества из подмножества, деление множеств на подмножества, сравнение их между собой.

ОСНОВНАЯ ЦЕЛЬ: осознание детьми того, как число может быть образовано из других чисел на основе анализа того, как множество может быть образовано из частей.

МАТЕРИАЛ: дискретные величины, геометрические фигуры, предметы.

ТРЕБОВАНИЯ:

  • постепенность (начинать с чисел 3, 4,5…),
  • не заучивать состав, а учить понимать способ действия,
  • использовать предметные, символические, вербальные и графические модели,
  • показать ВСЕ возможные варианты разложения числа на два меньших (по формуле n-1, где n – натуральное число).

ПРИЕМЫ РАБОТЫ

(для числа 3)

Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», — говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» — спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего — из 3 разноцветных кружков.

Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

(для числа 5):

1. Воспитатель выкладывает 5 кругов одного цвета, с обратной стороны круги имеют другой цвет (например, красный и синий). Выяснить, сколько кругов, чем они похожи.

                   
         
 
 

Перевернуть первый круг, уточнить: сколько синих? сколько красных? сколько всего кругов? Сколько взяли синих и красных кругов, чтобы всего получилось 5? Выяснить, как получилось число 5:

                   
         

                                                                                                               

                                                                                 

               1 да 4,   2 да 3,  3 да 2,  4 да 1

2. Медведица попросила медвежонка принести из леса 5 грибов. Это должны быть подосиновики и белые грибы. Покажи, как медвежонок может составить группу из этих грибов.

                   

                 

3. На 4 клумбах надо посадить по 5 цветов, причем на одной клумбе должны расти розы и тюльпаны. Как по-разному это можно сделать?

                              

           

4.  Расставь 5 пирамидок на двух полках. Как это можно сделать? (2,3; 3,2; 4,1; 1,4)

                                                                                

---------------------                                                             -----------------------------                            

                                                                                                       

-----------------------------                                               -------------------------------                  

                                                           

------------------------------------                         ----------------------------------------

                                 

--------------------------------------                                   -------------------------------------------

5. Разделить 5 карандашей между двумя детьми. Сколькими способами это можно сделать? (четырьмя)

6. У меня в двух руках 5 пуговиц. Сколько может быть пуговиц в каждой руке? Если в правой 3, то сколько в левой?(два) (данное задание дети выполняют исходя из отчетливых представлений о составе числа 5, в случае затруднения предложить воспользоваться предметной моделью, например, палочками, для того, чтобы восстановить вариант разложения: отсчитать 5 палочек, отложить в сторону 3, посмотреть, сколько осталось в другой группе).

7. Работа с числовыми фигурами: всего на карточке 5 кругов, сколько вы видите? Сколько я закрыла?(три)

8. Разделите 5 треугольников на две группы разными способами: (1,4; 2,3; 3,2; 4,1)

                   
         

9. Заполни пустые кружочки, «домики»: (2 в кружочке и 1,4;  2,3 в таблице)

5

1

3

                     5                                        

 
 

Овал: 3

10. Обведите числа, из которых состоит число 5:

1, 4, 3, 4, 1, 5, 2, 4, 1, 3, 2

Образец:

          

1, 4                  3,                    4, 1,            5, 2,         4, 1,                             3, 2         

Для закрепления знаний детей о составе числа из 2 меньших чисел используют разнообразные упражнения с предметами и моделями геометрических фигур.

Детям предлагают рассказы-задачи, например:

«На верхнем проводе сидели 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они еще могут сидеть?» (Ласточек на наборном полотне пересаживают с провода на провод.)

Или: «Вере подарили 4 карандаша. Она поделилась с Аней. Как она могла разделить карандаши?»

С этой же целью дают задания: одному ребенку взять 3 камешка (желудя) в обе руки, а остальным догадаться, сколько камешков у него в каждой руке; разделить группу из 3 (4, 5) игрушек между 2 детьми; нарисовать 2 разновидности фигур, например круги и квадраты, всего 4 фигуры; полезно рассмотреть с детьми числовые фигуры, на которых кружки расчленены на 2 группы.

Выполнив то или иное задание, дети каждый раз рассказывают о том, на какие 2 группы расчленена совокупность, сколько всего предметов в нее входит, и делают обобщение о составе числа из 2 меньших чисел. Например, ребенок говорит: «Я взяла 2 зеленые и 1 желтую ленточку, а всего 3 ленточки. Число 3 можно составить из 2 и 1; 2 и 1 вместе составляют 3».

Важно приучить детей по-разному строить ответы: идти как от частного к общему, так и от общего к частному: «Всего я нарисовал 4 фигуры: 3 квадрата и 1 фигуру овальной формы».

Не менее важно побуждать детей устанавливать отношение между целым и частями, т. е. делать вывод о составе числа: «Число 4 можно составить из 3 и 1; 3 и 1 вместе составляют 4».

Для подведения детей к обобщению им дают такие задания: педагог показывает карточку, на которой изображено от 3 до 5 предметов, но часть их он закрывает и говорит: «На карточке нарисованы 4 зайчика. Угадайте, сколько зайчиков я закрыла».

Педагог берет 2 числовые фигуры, одну из них, например с 3 кружками, показывает детям, а вторую поворачивает к ним обратной стороной и спрашивает: «Сколько кружков на перевернутой карточке, если на 2 карточках вместе 5 кружков? Как вы догадались?»

Можно побуждать детей находить в групповой комнате примеры разложения числа на 2 группы. Например, в групповой комнате может оказаться 2 шкафа с игрушками и 1 с пособиями, а всего 3 шкафа; 2 больших мишки и 3 маленьких, а всего 5 мишек и т. п.

Знакомство с составом числа из 2 меньших чисел обеспечивает переход к обучению детей вычислению.

Поделись с друзьями