Дорожные водопропускные сооружения и их классификация
Рельеф земной поверхности характерен неровностями, чередованием повышенных и пониженных участков. Как показывает статистика, в среднем на каждый километр трассы дорог приходится примерно одно понижение. Чтобы обеспечить сток воды от выпадающих осадков в местах пересечения дорогами пониженных участков рельефа, должны быть предусмотрены водопропускные сооружения. Для пропуска стока периодических и постоянных водотоков с малых водосборных бассейнов устраивают малые водопропускные сооружения.
Малые водопропускные сооружения встречаются на дорогах наиболее часто. Их доля доходит до 80 - 90% от общего числа водопропускных сооружений, а в целом по стране их количество достигает величины порядка миллиона.
По конструкции малые водопропускные сооружения (рис. 12.1) отличаются разнообразием: это малые мосты (а); безнапорные дорожные водопропускные трубы (б); работающие как водослив с широким порогом; напорные (в) и полунапорные (г) трубы, работающие как насадки и короткие трубы или отверстия в тонкой стенке. Это могут быть и дюкеры под насыпью дороги.
|
Основной целью гидравлических расчетов малых водопропускных сооружений на дорогах является определение их отверстия; напора перед ним, т.е. отметки подпертого уровня; глубины и скорости потока на выходе при определении вида крепления в отводящем русле для предотвращения подмыва конструкций.
Отверстием водопропускного сооружения называется его наибольший горизонтальный размер в свету в плоскости, перпендикулярной направлению движения потока. Так, для круглых труб отверстие равно их внутреннему диаметру d; для многоочковых - сумме внутренних диаметров всех труб; для труб прямоугольного сечения отверстие равно расстоянию между внутренними гранями боковых стенок, для однопролетного моста - ширине потока по свободной поверхности В в расчетном сечении подмостового русла.
Обычно отверстия малых водопропускных сооружений меньше ширины водотока, т. е. они стесняют поток воды. Из-за стеснения потока уровень воды в верхнем бьефе повышается. Этот уровень называют подпертым. Глубина потока за сооружением, как правило, равна нормальной hо, определяемой по формуле Шези с учетом расчетного расхода, формы сечения, коэффициента шероховатости и продольного уклона дна лога. Эта глубина никак не связана с типом искусственного сооружения, а определяется бытовым (естественным) состоянием водотока, поэтому ее и называют бытовой глубиной hб.
Как уже было отмечено выше, подавляющее большинство малых водопропускных сооружений на дорогах составляют безнапорные трубы и малые мосты, т. е. сооружения, работающие по принципу водослива с широким порогом. Движение воды через такие водопропускные сооружения имеет целый ряд особенностей, которые должны учитываться надлежащим образом при разработке метода их гидравлического расчета. В частности, соотношение напора и длины безнапорной дорожной трубы часто достигает значений 15 - 30. Это значительно превышает соответствующее соотношение даже для широкого водослива, где оно равно 11 - 12. Следовательно, при движении потока в дорожной трубе заметное влияние могут оказывать силы трения.
Конструкции водопропускных труб.
Конструкции водопропускных труб отличаются большим разнообразием.
Трубы состоят из оголовков, звеньев и фундаментов.
По форме отверстия различают трубы прямоугольные, круглые, овоидальные, прямоугольные с полуциркульным сводом и др.
Входная часть дорожной трубы называется входным оголовком. На рис. 11.2 изображены применяющиеся оголовки: портальный (а), коридорный (б), раструбный с обратными стенками (в), раструбный с коническим звеном трубы (г), а также безоголовочный вход (д) и овоидальная труба с воротниковым оголовком (<?). Наибольшее распространение получили портальные и раструбные оголовки.
В прямоугольных трубах отверстием 1,0...2,5м применяют раструбные оголовки с повышенным входным звеном. Его высота на 0,5 м больше высоты нормального звена. Применяют трубы и без оголовков.
Малые водопропускные сооружения изготавливают из металла, бетона, железобетона, камня и дерева. Применяют мосты – балочные, арочные, эстакадные и др. Существуют типовые проекты труб и мостов. На железных дорогах в основном применяют сборные трубы: круглые железобетонные диаметром 1,0...2,0м; прямоугольные бетонные отверстием 1,5...6,0м; круглые металлические гофрированные диаметром 1,3...3м.
Конструкции труб и мостов изучают в курсе «Проектирование мостов и труб». Размещение и выбор типа малых водопропускных сооружений на железных дорогах, проверку высоты насыпи и обеспечение условий нормальной эксплуатации сооружений и другие прикладные вопросы проектирования водопропускных сооружений изучают в курсе «Изыскания и проектирование железных дорог».
|
Гидравлическая классификация дорожных водопропускных труб и форм движения воды в них.
В зависимости от уклона дна трубы (ее лотковой части) различают трубы: с нулевым уклоном (J0 = 0); с прямым малым уклоном (J0 < Jк); с уклоном равным критическому (J0 = Jк); с прямым большим уклоном (J0 > Jк).
Критический уклон вычисляют по формулам
В зависимости от наличия свободной поверхности в дорожных трубах различают движение воды в трубах: безнапорное (рис. 11.1, б); полунапорное (рис. 11.1, г); напорное (рис. 16.1, в).
При безнапорном движении (безнапорные трубы) поток на всей длине трубы имеет свободную поверхность, входное сечение трубы не затоплено. Это бывает при Н/hТ ≤ 1,2, где Н – статический напор; hТ – высота трубы (или диаметр трубы d).
При полунапорном движении входное сечение трубы заполнено водой (поток соприкасается с периметром отверстия по всей его длине) и на всей длине трубы поток имеет свободную поверхность. Это соблюдается, если 1,2 ≥ Н/hТ ≥ 1,4 (полунапорная труба). Такая форма движения воды аналогична истечению жидкости из-под затвора.
При напорном движении жидкости в трубе ее сечение заполнено водой на всем протяжении трубы или на большей ее части, что наблюдается при Н/hТ > 1,4. Приведенные критерии гидравлических условий работы труб приближенные. Они зависят от формы оголовков труб.
В подмостовых руслах поток всегда безнапорный. В зависимости от соотношения между местными гидравлическими сопротивлениями и сопротивлениями по длине потока в трубе различают короткие и длинные трубы. Короткой называют трубу, длина которой не оказывает существенного влияния на ее пропускную способность, определяющуюся главным образом условиями входа воды в трубу – местными сопротивлениями. Длинной называют трубу, в которой гидравлические сопротивления обусловлены главным образом потерями энергии по ее длине, но местные гидравлические сопротивления также учтены. В зависимости от влияния уровня воды в нижнем бьефе (для безнапорных труб) различают неподтопленные трубы, когда уровень нижнего бьефа не влияет на ее пропускную способность, и подтопленные, когда уровень нижнего бьефа влияет на пропускную способность трубы и напор перед ней. Эти же формулировки относятся и к потокам в подмостовых руслах.
Формы свободной поверхности в трубах.
Формы свободной поверхности в трубах отличаются большим разнообразием.
Предположим, что безнапорная труба имеет малый уклон (см. рис. 11.1, б). В этом случае свободную поверхность потока в трубе или под мостом можно разделить на три участка. Первый – входной. С гидравлической точки зрения он начинается в сечении перед трубой или мостом, в котором наблюдается статический напор Н, и заканчивается в сечении со сжатой глубиной hс. Однако по практическим соображениям за начальное сечение входного участка принимают сечение, проходящее через нижнюю точку трубы, а чаще через верхнюю точку трубы. Последнее сечение предпочтительно, так как, зная в нем площадь живого сечения, легко подсчитать скорость потока при входе в трубу. Обозначим длину входного участка lвх и глубину hвх. На среднем участке (втором) длиной l0 имеем кривую подпора при возрастании глубины от hc до h. В случае неподтопленной трубы или моста со стороны нижнего бьефа глубина h несколько меньше критической глубины hк, но принимается равной ей. На третьем участке, называемом выходным или сливным, глубина изменяется от hк до hнб. По практическим соображениям выходное сечение трубы совмещают с верхней кромкой трубы. Следовательно, l = lвх + l0 + lвых.
Пусть полунапорная труба имеет малый уклон (см. рис. 16.1, г). Ниже входного сечения образуется сжатая глубина hc, далее – кривая подпора, а затем кривая спада. Движение воды в полунапорных трубах аналогично истечению жидкости через отверстия в тонкой стенке.
Движение воды в напорных дорожных трубах аналогично истечению через насадки. В начале трубы (см. рис. 11.1, в) наблюдается явление сжатия потока (в данном случае несимметричное), благодаря чему образуется вакуум. Если применяются хорошо обтекаемые входные оголовки, то вакуум в дорожной напорной трубе не образуется. Вода из трубы может выходить без подтопления со стороны нижнего бьефа – истечение происходит в атмосферу с образованием кривой свободной поверхности в конце трубы. Если hнб > d, то истечение происходит под уровень нижнего бьефа.
Преимущество дорожных труб состоит в том, что они не нарушают целостности земляного полотна. Предпочтение отдается безнапорным трубам. Преимущество малых мостов в том, что их применяют при малых высотах насыпей.
Гидравлический расчет водопропускных труб и малых мостов
Гидравлический расчет отверстий безнапорных дорожных труб и малых мостов основан на аналогии с расчетом движения воды через водослив с широким порогом, а полунапорных – на аналогии с истечением жидкости из-под затвора.
Применение теории водослива с широким порогом к расчету безнапорных прямоугольных труб и малых мостов.
С гидравлической точки зрения нет принципиальной разницы между течением жидкости в прямоугольной трубе и в укрепленном прямоугольном подмостовом русле. Над неподтопленным водосливом имеем течение жидкости с двумя перепадами. Такая же форма движения воды наблюдается и при неподтопленном движении в трубах и под мостами (см. рис. 11.1). Разница в том, что высота порога в трубах и под мостами равна нулю или же очень мала. При наличии порога поток при входе на водослив испытывает вертикальное и боковое сжатие, а при входе в трубу и подмостовое русло – в основном боковое сжатие, но формы свободной поверхности воды аналогичны. Дно трубы или подмостовое русло (см. рис. 11.1) имеет некоторое возвышение по отношению к дну потока в верхнем бьефе. Нельзя смешивать разные понятия – напор и глубину перед сооружением.
Условия неподтопления и подтопления для труб и мостов формируются так же, как и для водосливов с широким порогом. Если отметка дна трубы или отметка подмостового русла совпадает с отметкой дна в нижнем бьефе (см. рис. 11.1), то Нн = hнб. Следовательно, труба (мост) работает без подтопления, если hнб/Н0 < 0,8 или hнб/hк ≤ 1,25, и с подтоплением, если hнб / Н0 > 0,8 или hнб / hк > 1,25.
Безнапорные трубы.
Расход воды, протекающей через прямоугольную короткую безнапорную неподтопленную трубу (мост), выражается формулой
Расход воды известен. В уравнение входят два неизвестных – напор Н и ширина отверстия b. Задаваясь Н или b, соответственно получим уравнения:
(11.1)
где H0 – полный напор;
(11.2)
где m – коэффициент расхода трубы (моста).
Прямоугольную трубу считают короткой, если ее длина l при J0 ≈ 0 отвечает условию lт ≤ lпр, где
(11.3)
Коэффициент расхода m зависит от условий входа воды в трубу и ее формы поперечного сечения. Для прямоугольных труб без оголовков m = 0,31. С оголовками: портальным с конусами m = 0,325; коридорным m = 0,34; раструбным m = 0,36.
Значение b, полученное по формуле (11.1), необходимо округлить до ближайшего большего значения в соответствии с типовыми проектами.
При принятом значении b подсчитывают статический напор Н. Расчет ведется способом последовательных приближений, так как средняя скорость потока υ0 в верхнем бьефе зависит от Н. В ходе расчетов необходимо проверять соблюдение условия неподтопления водослива.
Согласно СНиП 2.05.03-84 отверстие (и высоту в свету) труб следует назначать, как правило, не менее 1,0 м при длине трубы (или расстоянии между смотровыми колодцами в междупутье на станциях) до 20 м.
Трубы относятся к длинным, если lТ > lпр в соответствии с формулой (11.3). Увеличение длины трубы способствует повышению напора перед ней. Статический напор для длинной трубы Ндл можно приближенно подсчитать по формуле
где Н – статический напор перед такой же короткой трубой.
Из формулы видно, что при lТ/hТ = 20; Ндл = Н. Следовательно, длинной трубой ориентировочно можно считать трубу с lТ > 20hТ.
При принятой ширине отверстия трубы (моста) статический напор Н можно определить по глубине воды в трубе (подмостовом русле), считая, что она равна критической глубине hк. Запишем уравнение Д.Бернулли для сечений перед трубой (мостом) и в трубе
,
где υк – средняя скорость потока при глубине hк.
Учитывая, что и последнее уравнение запишем в виде
Критическую глубину подсчитывают по формуле (8.15)
Подмостовые русла могут быть укреплены различными способами, поэтому гидравлический расчет мостов с укрепленными руслами может быть выполнен по допускаемой неразмывающей скорости υнр. Запишем уравнение, принимая Вк = bк для неподтопленного моста
Так как ωк = Q / υк, последнюю формулу перепишем в виде
Принимая υк = υнр и вводя в формулу коэффициент бокового сжатия потока ε < 1, получим (строительная ширина отверстия)
(13.4)
В первом приближении можно принять εα ≈ 1,0, так как коэффициент Кориолиса α > 1,0.
Воспользовавшись уравнением для расхода воды в трубах и подмостовых руслах с подтоплением со стороны нижнего бьефа, из него можно найти ширину отверстия (при φ ≈ φп):
(13.5)
Глубина h равна разности отметок поверхности воды и отметки дна трубы (подмостового русла) при J0 ≈ 0. Зная h, находим . Коэффициент ε ≈ 0,8... 0,9.
Статический напор перед трубой (мостом)
Согласно СНиП 2.05.03-84 водопропускные трубы следует, как правило, проектировать с безнапорным в них движением воды. Допускается предусматривать полунапорное и напорное движение воды в трубах, сооружаемых на железных дорогах общей сети для пропуска только наибольшего расхода, на всех остальных дорогах – расчетного расхода воды.
Полунапорные трубы.
Формулу для расхода воды в этом случае (см. рис. 11.1, г) получим, записывая уравнение Д. Бернулли для сечения перед трубой и для сжатого сечения в трубе с глубиной hс. В результате получим
(11.6)
Введя коэффициент вертикального сжатия потока (в трубе) ε, получим: hc = εhT и φε = µ коэффициент расхода. В соответствии с опытными данными значения ε и µ, принимают соответственно: труба прямоугольная без оголовков – 0,86; 0,63; портальный оголовок с конусами – 0,74; 0,62; коридорный – 0,83; 0,61; раструбный – 0,78; 0,64.
Для неподтопленных безнапорных круглых труб, а также труб других поперечных сечений можно применять формулу
(11.7)
где средняя ширина потока в сечении с критической глубиной.
Формула (16.6) может быть использована и для расчета отверстий малых мостов с трапецеидальной формой живого сечения.
Поможем написать любую работу на аналогичную тему