Нужна помощь в написании работы?

В детерминированном факторном анализе можно выделить четыре типовые задачи:

1. Оценка влияния относительного изменения факторов на относительное изменение результативного показателя.

2.     Оценка влияния абсолютного изменения i-го фактора на абсолютное изменение результативного показателя.

3.     Определение отношения величины изменения результативного показателя, вызванного изменением i-го фактора, к базовой величине результативного показателя.

4.     Определение доли абсолютного изменения результативного показателя, вызванного изменением i-го фактора, в общем изменении результативного показателя.

Охарактеризуем эти задачи и рассмотрим решение каждой из них на конкретном простом примере.

Пример.

Объем валовой продукции (ВП) зависит от двух основных факторов первого уровня: численности работников (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель: . Рассмотрим ситуацию, когда и выработка, и численность рабочих в отчетном периоде отклонились от запланированных значений.

Данные для расчетов приведены в таблице 1.

Таблица 1. Данные для факторного анализа объема валовой продукции.

Показатель

Условное обозначение

План

Факт

Отклонение

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Валовая продукция, млн. руб.

ВП

160 000

240 000

80 000

Среднегодовая численность рабочих, чел.

ЧР

1000

1200

+200

Среднегодовая выработка одного рабочего, млн. руб.

ГВ

160

200

+40

Задача 1.

Задача имеет смысл для мультипликативных и кратных моделей. Рассмотрим простейшую двухфакторную модель . Очевидно, что при анализе динамики этих показателей будет выполняться следующее соотношение между индексами:

,

где значение индекса находится отношением значения показателя в отчетном периоде к базисному.

Рассчитаем индексы валовой продукции, численности работников и среднегодовой выработки для нашего примера:

;

.

Согласно вышеприведенному правилу, индекс валовой продукции равен произведению индексов численности работников и среднегодовой выработки, т. е.

.

Очевидно, что если мы рассчитаем непосредственно индекс валовой продукции, то получим то же самое значение:

.

Мы можем сделать вывод: в результате увеличения численности работников в 1,2 раза и увеличения среднегодовой выработки в 1,25 раза объем валовой продукции увеличился в 1,5 раза.

Таким образом, относительные изменения факторных и результативного показателей связаны той же зависимостью, что и показатели в исходной модели. Данная задача решается при ответе на вопросы типа: "Что будет, если i-й показатель изменится на n%, а j-й показатель изменится на k%?".

Задача 2.

Является основной задачей детерминированного факторного анализа; ее общая постановка имеет вид:

Пусть - жестко детерминированная модель, характеризующая изменение результативного показателя y от n факторов; все показатели получили приращение (например, в динамике, по сравнению с планом, по сравнению с эталоном):

; .

Требуется определить, какой частью приращение результативного показателя y обязано приращению i-го фактора, т. е. расписать следующую зависимость:

,

где - общее изменение результативного показателя, складывающееся под одновременным влиянием всех факторных признаков;

- изменение результативного показателя под влиянием только фактора .

В зависимости от того, какой метод анализа модели выбран, факторные разложения могут различаться. Поэтому рассмотрим в контексте данной задачи основные методы анализа факторных моделей.

Поделись с друзьями