Основные понятия, термины, определения
Деформативные свойства материалов проявляются при воздействии на них механических и термических нагрузок, в результате которых в материале возникают различного рода деформации, напряженное состояние и, наконец, наступает разрушение.
Деформация — это нарушение взаимного расположения множества частиц материальной среды, которое приводит к изменению формы и размеров тела и вызывает изменение сил взаимодействия между частицами, т.е. возникновение напряжений. Заметим, что чаще деформации вызывают напряжения, и поэтому, как правило, строят графики зависимости напряжений от деформаций, а не наоборот.
Простейшими элементами деформации являются относительное удлинение и сдвиг.
Относительное удлинениё «ε» стержня или материального волокна среды длины «l» есть отношение изменения (l - lo) к первоначальной длине: ε = (l-lo)/lo.
Сдвигом называется изменение угла у между элементарными волокнами, исходящими из одной точки и образующими прямой угол до деформации (см. рис. 5.1).
В твердых телах деформация называется упругой, если она исчезает после снятия нагрузки, и пластической, если она после снятия нагрузки не исчезает; если она исчезает не полностью, то называется упругопластической, если она изменяется во времени и обратима, то называется вязкоупругой.
Разрушение — это ослабление взаимосвязи между частицами при нарушении сплошности структуры.
Различают хрупкое, т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение твердого тела.
Таким образом, к этой группе свойств можно отнести упругость, пластичность, хрупкость, вязкость, прочность и твердость.
Упругость
Упругость — свойство изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий.
Упругость тел обусловлена силами взаимодействия атомов, из которых они построены. В твердых телах при температуре абсолютного нуля и отсутствии внешних воздействий атомы занимают равновесное положение, в котором сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна.
Под влиянием внешних воздействий атомы смещаются относительно своих равновесных положений, что сопровождается увеличением потенциальной энергии тела на величину, равную работе внешних сил на изменение формы и объема тела. В результате возникают напряжения, величины которых пропорциональны произведенной деформации.
Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорциональны силам межатомного взаимодействия, подобно тому, как удлинение или сжатие пружины пропорционально приложенной силе. Поэтому упругое тело можно представить как совокупность атомов-шариков, соединенных пружинами, ориентации которых фиксированы другими пружинами (рис. 5.1), а константы упругости пружин модели подобны модулю упругости материала.
Рис. 5.1. Шариковая модель элементарной ячейки кубического кристалла:
а - в равновесии при отсутствии внешних сил;
б - под действием внешних сил и касательных напряжений
Поле снятия нагрузки конфигурация упругого деформированного тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние. Запасенная в теле избыточная потенциальная энергия превращается в кинетическую энергию колеблющихся атомов, т.е. в теплоту.
Константы упругости
Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.
Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.
С учетом вышеизложенного для большинства природных и искусственных материалов (горные породы, керамика, бетон, металлы и т.д.) при малых деформациях зависимости между напряжениями «σ» и деформациями «ε» можно считать линейными (рис. 5.2) и описывать обобщенным законом Гука:
σ = Еε,
где Е — модуль упругости (модуль Юнга).
Подобным образом напряжение сдвига «τ» прямо пропорционально относительной деформации сдвига или углу сдвига у(рис. 5.3):
τ = G . у
где G — модуль сдвига.
о.
Рис. 5.2. Классическая зависимость напряжение — деформация:
А — керамики; В — металлов; С — полимеров
Рис. 5.3. Упругая деформация твердого тела при сдвиге
Удлинение образца при растяжении сопровождается уменьшением его толщины (рис. 5.4). Относительное изменение толщины Δl/l к относительному изменению длины Δd/d называется коэффициентом Пуассона «μ» или коэффициентом поперечного сжатия:
μ = (Δl/l) / (Δd/d).
Рис. 5.4. Упругая деформация твердого тела при растяжении
Если при деформации тела его объем не изменяется, а это может иметь место только при пластическом или вязком течении, то μ = 0,5. Однако, практически, эта величина значительно ниже теоретического показателя и для разных материалов она различна. Упругие материалы (бетон, керамика и др.) имеют невысокие значения коэффициента Пуассона (0,15-0,25), пластичные (полимерные материалы) — более высокие (0,3-0,4). Это объясняется зависимостью между силами притяжения и отталкивания и изменением межатомного расстояния при деформации.
Модуль Юнга
Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).
Е =σр/ε;
Где: σр – критическое напряжение.
У поликристаллических материалов обычно наблюдаются отклонение от линейной σ = ƒ(ε,), не связанное с энергией кристаллической решетки, а зависящей от структуры материала. Для оценки упругих свойств таких материалов применяют два модуля упругости: касательный Е = tgα и секущий V= tgβ, который называют модулем деформаций (рис. 5.5).
Рис. 5.5. Схематическое изображение деформации огнеупоров:
а — кривая деформации; б — точка разрушения;
σ; — предельное напряжение при разрушении; ε — деформация
Величина модуля упругости двухфазной системы является средней между величинами модулей упругости каждой из фаз, и аналитическое выражения для ее нахождения аналогичны тем, что используются при различных значениях линейного КТР:
Е = Е1V1 + E2V2,
где V1 и V2 — относительные объемные доли первой и второй фаз.
Это соотношение используется при разработке стеклопластиков, т.е. пластмасс, армированных стекловолокном. Е стекловолокна (~7.104 МПа) велик по сравнению с Е пластмасс (Е = 0,7.104 МПа). Поэтому даже при низкой объемной доле стекловолокна в композиции на него как на более прочный компонент приходится большая часть общей нагрузки.
Пористость и модуль Юнга
Увеличение пористости структуры снижает ее модуль упругости, так как пористость представляет собой вторую или п-ю фазу с минимальным модулем упругости. Количественно эта зависимость представляется достаточно сложной, так как кроме суммарного объема пор необходимо учитывать их форму, непрерывность, извилистость и пр. Если принять, коэффициент Пуассона μ равным 0,3, то величина модуля упругости пористого тела в случае наличия замкнутых пор в непрерывной среде достаточно точно может быть определена по следующему эмпирическому уравнению:
Е = Ео (1-1,9П+0,9П2),
где Е и Ео — модули упругости пористого и абсолютно плотного тела;
П — относительная пористость, ед.
Если в пористых материалах пространство пор непрерывно, а твердые частицы могут смещаться относительно друг друга, то влияние пористости оказывается более значительным, чем в результате определения по приведенному уравнению.
Термическое расширение и модуль упругости
Кристаллические тела с высоким КТР имеют, как правило, низкий модуль упругости. С повышением температуры расстояние между атомами увеличивается также за счет термического расширения, и упругая составляющая деформации несколько снижается, уменьшая напряженное состояние и, как следствие, модуль упругости. При высоких температурах упругая составляющая понижается значительно. Наконец, она становится настолько малой, что тело теряет свои упругие свойства, т.е. переходит из состояния неустойчивого равновесия в равновесное состояние, в котором величина напряжения и силы межатомного взаимодействия зависят только от температуры.
В материаловедении такое состояние, называемое пиропластическим, и является необходимым условием для формования (ковка, црокат, горячее прессование, термопластичное формование и пр.) различных материалов и изделий.
Пластичность
Пластичность (от греч. р1аstcos — податливый) — свойство твердых тел и материалов деформироваться (изменять свою форму и размеры) без нарушения сплошности структуры под действием внешних сил и сохранять часть деформации после прекращения действия этих сил. Такие сохраненные (необратимые или остаточные) деформации часто называют пластическими.
Все реальные твердые тела, даже при малых деформациях, в большей или меньшей степени обладают пластическими свойствами, т.е. наряду с упругими деформациями также имеют место пластические. Соотношения между двумя противоположными видами деформации для различных материалов неодинаковы. В керамике это соотношение в пользу упругой деформации, в полимерах — в пользу пластической. По этому показателю условный ряд материалов с повышением доли пластической деформации может быть представлен следующим образом:
керамика → метал → высокомолекулярные соёдинения.
Это соотношение зависит от многих факторов, в том числе от структуры твердого тела. Например, в отформованном глиняном сырце доля упругой деформации невелика по сравнению с пластической. В высушенном глиняном образце доля пластической деформации значительно уменьшилась, а в спеченной керамике эта доля ничтожна. Это объясняется так: под влиянием температурных воздействий структура глиняного сырца претерпела кардинальные изменения: высокодисперсная коллоидная система превратилась в пористую стеклокристаллическую структуру с высоким модулем упругости.
Заметим, что при нагружении любое твердое тело можно считать упругим, т.е. не проявляющим заметных пластических деформаций, до тех пор, пока нагрузка не превысит некоторого предела, после которого часть деформаций становится необратимой. Напряженное состояние этого момента называется пределом текучести σт. После этого предела линейный характер взаимосвязи напряжение — деформация нарушается, в дальнейшем он может восстановиться, но в другом соотношении σ/ε. При пластической деформации, сопровождающейся нарушением связности структуры, наступает разрушение, характеризующееся резким падением напряжения Пограничное состояние между пластической деформацией и разрушением называется предельным напряжением структуры σпр, которое численно равно пределу прочности Rпр твердого тела.
Из графика (рис. 5.6) следует, что при повышении нагрузки до предела текучести σт проявляются только упругие деформации, и напряжение возрастает с большой скоростью. После достижения σпр проявляются только пластические деформации, хотя в обоих случаях имеют место и те, и другие. В этот период напряжение возрастает медленно и только за счет наличия упругих деформаций, вплоть до нарушения сплошности структуры, Rпр.
Таким образом, становится очевидным, что появление пластических деформаций свидетельствует о начале процесса разрушения структуры твердого тела. Этот факт следует учитывать при расчете или выборе конструкций различного функционального назначения, разработке способов подготовки масс, формования, других технологических переделов.
Рис.5.6. Кривые зависимости напряжение – деформация:
______ упругая деформация;
----------пластическая деформация.
Рис. 5.7. Зависимость упругой и пластической деформаций от времени приложения нагрузки
На рис. 5.7 изображен график временной зависимости деформации при постоянном напряжении и температуре.
В момент нагружения, которое осуществляется со скоростью звука, в твердой непрерывной среде возникает только упругая деформация 4 (отрезок ОА). С течением времени в твердом теле развивается необратимая деформация. Совокупное развитие обратимой и необратимой деформаций во времени характеризуется отрезком АВ. В момент времени τi, соответствующий т. В, обратимая деформация достигает равновесного значения при действующем напряжении и больше не увеличивается. Если бы наблюдаемая деформация была обусловлена только обратимой (упругой) составляющей деформации, то в дальнейшем она не изменялась бы во времени, и отрезок ВС располагался бы параллельно оси времени. В действительности деформация непрерывно увеличивается, но уже за счет необратимой составляющей, и отрезок ВС характеризует ее изменение во времени.
Если участок ВС прямолинеен, то, экстраполируя его к нулевому моменту времени, получаем графическое выражение закона пластической деформации в виде прямой ВС. Пластическая деформация (отрезок ДЕ), накопившаяся за время τ2 остается после снятия нагрузки, когда со временем гз исчезает упругая составляющая (кривая СД).
Резюмируя сказанное, отметим следующее:
- в момент нагружения (мгновенно) имеет место только упругая деформация (ОА);
- в период достижения упругой деформацией равновесного значения (АВ) имеет место как упругая, так и пластическая деформация,
- в период роста пластической деформации упругая составляющая остается неизменной (ВС);
- после снятия нагрузки исчезает упругая деформация (СД);
- (ДЕ) - пластическая деформация.
Разделение упругой и пластической деформаций, улучшение пластических свойств материала — достаточно сложные, но подчас необходимые операции при создании новых технологий переработки, обработки, формования различных материалов и получении материалов с заданными свойствами.
Причины и механизм образования пластических деформаций
Напомним, что при приложении к твердому телу внешней силы, величина которой превышает предел текучести а возникает пластическая деформация, образующаяся в результате скольжения плоскостей атомной решетки благодаря напряжению сдвига. Напряжение, необходимое для смещения ряда атомов вдоль некоторой плоскости, как показано на рис. 5.8, можно определить по формуле:
σт = (G/2π)(b/h),
где G— модуль сдвига;
b — расстояние между атомами в направлении скольжения;
h — расстояние между плоскостями скольжения.
Рис. 5.8. Отклонения в расположении атомов под воздействием напряжения сдвига
Следует заметить, что во время скольжения плоскостей каждый атом перемещается не вдоль прямой линии расположения соседних атомов, где необходимо преодолевать высокий энергетический барьер, а по зигзагу через места с низкими энергетическими барьерами, и поэтому значение σT должно быть на порядок ниже. Например, для Al2O3 теоретическое значение σT = 1,7х 105МПа, а реальное в 17 раз меньше. Тот факт, что экспериментальные значения оказываются гораздо меньше теоретических, можно отнести почти ко всем другим твердым материалам, а также металлам.
Способность различных материалов к пластической деформации и механизм ее образования можно объяснить с помощью понятия “дислокации”. Если к кристаллу приложить усилие, вызывающее напряжение сдвига, то происходит скольжение его верхней и нижней частей во взаимно противоположных направлениях. В результате этого возникают дислокации, т.е. линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.
Поскольку дислокация в кристалле обладает собственным полем напряжений, возникающим от действия внешних сил, она также испытывает силу, под действием которой приходит в движение, результатом чего является взаимное “проскальзывание” атомных плоскостей, или пластическая деформация.
Каждый раз при перемещении дислокации в плоскости скольжения разрываются и возникают новые связи не между всеми атомами на плоскости скольжения, а только между теми атомами, которые находятся у линии дислокации. Поэтому пластическая деформация сдвига происходит при сравнительно малых внешних напряжениях, которые значительно ниже теоретических, т.е. без дислокаций.
Плоскость скольжения образуется в кристалле лишь на участках со слабой связью между атомами. При этом скольжение происходит в направлении самого низкого энергетического барьера, который необходимо преодолеть. Механизм скольжения, основанный на движении дислокаций, можно идентифицировать с перемещением по полу ковра с предварительно созданной складкой. На рис. 5.9. приведен пример систем скольжения в кристалле поваренной соли.
Рис. 5.9. Системы скольжения в кристаллах типа NаСl
Если приложить к кристаллу внешнюю силу в каком-то направлении, то на скольжение в кристалле будут эффективно влиять только те составляющие внешней силы, которые соответствуют системам скольжения. Исходя из этого, можно заключить, что чем больше вероятность реализации системы скольжения, тем выше пластические деформации кристалла. Очевидно, что в металлах такая вероятность значительно выше, чем в природных каменных материалах и керамике.
Подвижность дислокаций, обеспечивающая пластические свойства кристалла, ограничивается не только прочностью межатомных связей, но и рассеянием фононов и электронов проводимости в упругоискаженной области кристалла. Кроме того, движению дислокации мешают также упругое взаимодействие с другими дислокациями и с примесными атомами межзеренными границами в поликристаллах и пр. На преодоление отмеченных препятствий затрачивается часть работы внешних сил. Из этого следует, что реальный кристалл (с дислокациями) «мягче» или пластичнее бездефектного, но если плотность дислокаций становится выше критического значения, то он становится более прочным и «жестким».
Дислокации, как и иные дефекты кристаллов, влияют не только на такие их свойства, как пластичность и прочность, но и на другие физические свойства кристаллов. Например, с увеличением плотности дислокаций возрастает внутреннее трение, изменяются оптические свойства, повышается электрическое сопротивление (металлов). Дислокации увеличивают скорость диффузии в кристаллах, ускоряют процессы старения, увеличивают химическую активность и уменьшают стойкость кристаллических структур в различных средах.
Таким образом, пластичность наряду с упругостью является важнейшей характеристикой твердых тел. Пластические деформации, возникающие в теле под действием внешних сил, позволяют судить о характерных особенностях структуры того или иного материала в двух основных аспектах:
1. Появление пластических деформаций — свидетельство начала разрушения структуры материала. Это позволяет:
- определить запасы прочности, деформируемости и устойчивости структуры;
- снизить материалоемкость изделий и конструкций;
- обеспечить их наиболее рациональное функционирование, надежность и безопасность;
- повысить сопротивляемость тел ударным нагрузкам, снизить концентрацию напряжений в материале.
2. Наличие значительных пластических деформаций — положительный момент для обеспечения качественного формования и обработки твердых тел давлением (прокатка, штамповка, ковка и т. п.).
Хрупкость
Если при нагружении твердых тел возникают преимущественно упругие деформации, а пределы текучести и прочности имеют близкие значения, то такие тела называются хрупкими. (У идеально хрупких тел σТ =Rпр).
Хрупкие тела разрушаются почти мгновенно, с едва заметной деформацией.
Отсюда следует, что хрупкость — свойство материала разрушаться при незначительной, преимущественно упругой, деформации, при напряжениях, средний уровень которых несколько ниже предела текучести.
Эластичность
Эластичность (от греч. е1аstos — гибкий, тягучий) — способность материала или изделия испытывать значительные упругие (обратимые) деформации без разрушения при сравнительно небольших усилиях. Такой способностью обладают каучуки (натуральные и синтетические), резина, некоторые, в основном линейные, полимеры. Благодаря этой способности их обычно называют эластомерами.
В отличие от упругости кристаллических материалов и стекол, обратимые деформации которых составляют доли процента или несколько процентов, упругие деформации эластомеров достигают 100% и более. Это связано с особым состоянием полимеров, которое называется высокоэластическим.
Высокоэластическое состояние является устойчивым в определенном для каждого полимера интервале температур, ниже которого полимер находится в стеклообразном состоянии, а выше — в вязко - текучем состоянии.
Поможем написать любую работу на аналогичную тему