Основные понятия, термины, определения
Коррозионная стойкость — способность материала противостоять действию агрессивных сред (коррозии).
Коррозия (от лат. соrrоsiо — разъедание) — разрушение материалов вследствие химического или электрохимического взаимодействия со средой.
Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды, и эрозионного, вызываемого механическим воздействием.
Эрозионное разрушение интенсивно протекает при относительно быстром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.
Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изучении эксплуатационных свойств покрытий полов, дорожных покрытий и пр.
Виды коррозии строительных материалов
Коррозия строительных материалов различается по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:
коррозионная среда:
газовая: (инертный газ; химически активный газ);
жидкостная: (кислотная; соленая; щелочная, морская; речная; в расплаве металлов, силикатов)
характер разрушения: (равномерное, солевая, неравномерное, избирательное, поверхностное, растрескивание, местное, межкристаллитное);
виды воздействий (процессов):(химические; электрохимические; биологические).
Газовая коррозия представляет собой коррозию в газовой среде при полном отсутствии конденсации влаги на поверхности материала. Этому виду коррозии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика). Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит от природы материала, его структуры и свойств новообразований на его поверхности.
Жидкостная коррозия природных и искусственных каменных материалов, происходящая под действием растворов электролитов и не электролитов, а также различных расплавов, носит в основном химический характер, хотя, в зависимости от вида и свойств жидкости отличается рядом особенностей. Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение. Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется так же смачивающими свойствами жидкости.
Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.
Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на от дельных участках или неоднородности самого материала (его состава и структуры). Так, в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неоднородной пористости также способствует образованию в нем неравномерной коррозии.
Избирательная коррозия характерна для материалов, в которых один из компонентов при формировании структуры образует легко растворимые соединения. В период эксплуатации эти соединения могут переходить в раствор, образуя на поверхности материала так называемые «высолы».
Межкристаллитная коррозия возникает в результате разрушения материала по границам зерен и быстро распространяется в глубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым материалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.
Коррозионное воздействие в общем случае может иметь два принципиально различных механизма: химическое взаимодействие и растворение.
Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале — добавок химические реакции могут протекать между всеми элементами взаимодействия. Поскольку каменные материалы являются диэлектриками и взаимодействие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.
При воздействии агрессивных сред на металлы происходит электрохимический процесс передачи электронов из слоя металла с более низким электрическим потенциалом к слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.
Биологическая коррозия — разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды веществ, большинство из которых по отношению к строительным материалам являются агрессивными. Животные организмы вызывают биоповреждения материалов как непосредственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности. Низшие растительные организмы и микроорганизмы (водоросли, лишайники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.
Коррозию, возникающую в результате воздействия на строительные материалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято называть органогенной коррозией.
Факторы, влияющие на коррозионную стойкость строительных материалов
Коррозионная стойкость строительных материалов зависит от многих факторов, которые подразделяются на внешние и внутренние.
Внешние факторы определяют агрессивность среды и ее влияние на материал. К ним можно отнести рН среды, температуру и ее перепад, а также интенсивность воздействия среды на материал.
Водородный показатель раствора электролита, характеризующий активность в нем ионов водорода, является весьма важным фактором, влияющим на процесс химической коррозии. Скорость коррозии силикатов в растворах электролитов в значительной степени зависит от характера растворов и протекает по-разному в кислых, щелочных или нейтральных средах.
Вода как участник технологического процесса рассматривается в двух аспектах: как нейтральный компонент, служащий для придания смеси необходимых свойств, и как растворитель и переносчик ионов.
Причиной коррозии многих строительных материалов в воде или в других электролитах является термодинамическая неустойчивость соединений, содержащихся в этих материалах, которая связана с развитием процессов гидратации, сопровождающихся экзотермическими или эндотермическими эффектами.
Экзотермический эффект свидетельствует о созидательном процессе в материале, например при гидратации цемента, а эндотермический эффект — о разрушительном, например при гидратации керамического черепка.
Поведение химических элементов в растворах во многом зависит от величины радиусов ионов и их валентности, а точнее, от величины отношения валентности иона к его радиусу, называемой ионным потенциалом:
РI = V/R,
где РI — ионный потенциал, Å-1 ;
V — валентность, ед.;
R — ионный радиус, Å..
Чем меньше ионный потенциал, тем сильнее проявляются основные свойства элементов, чем он больше — кислотные. Например, К и Na характеризующиеся малыми ионными потенциалами, соответственно 0,75 и 1,02, обладают резко выраженными щелочными свойствами. Элементы, имеющие ионный потенциал в пределах 4,7... 8,6, обладают амфотерными свойствами, а при РН> 8,6 кислотными свойств
Сравнивая активность элементов по ионному потенциалу, получим следующее распределение катионов в порядке убывания:
SiO2 → TiO2 → MgO → Fe → Cu
Высокий ионный потенциал катиона кремния обусловливает образование прочных анионных групп с ионами кислорода.
Температура — одна из важнейших переменных, влияющих на коррозионную и эрозионную стойкость. Повышение температуры, как правило, способствует усилению коррозионного воздействия за счет увеличения предельной растворимости, скорости диффузии и интенсивности химических реакций.
Перепады температур в системе вызывают термический перенос массы, что может сделать непригодным применение материала, который в нормальных условиях имеет малую растворимость.
Интенсивность воздействия среды влияет на скорость коррозионных процессов. Увеличение объема среды, находящейся в контакте с материалом, может усилить коррозионное воздействие за счет увеличения средней скорости растворения материала.
Внутренние факторы — это состав, структура материала и его свойства.
Ввиду особенностей строения различных материалов влияние на них внешних факторов неодинаково, и поэтому коррозионную стойкость обжиговых, плавленых, гидратационных материалов, а также металлов и древесины рассматривают раздельно. И мы с Вами начнем изучение свойств конкретных материалов со следующей лекции.
Общие принципы повышения коррозионной стойкости
Коррозионная стойкость определяется массой материала, превращенного в продукты коррозии в единицу времени с единицы площади, находящегося во взаимодействии с агрессивной средой, а также размером разрушенного слоя в мм за год.
Основными принципами повышения коррозионной стойкости строительных изделий и конструкций являются:
- подбор состава композиций, отличающегося низкой активностью в агрессивных средах;
- использование специальных покрытий для химической, тепловой и механической защиты изделий и конструкций от воздействия агрессивных сред.
Следует отметить, что основным критерием, определяющим эксплуатационные свойства строительных материалов, является время. Поэтому такие характеристики материала, как водостойкость, морозостойкость и коррозионная стойкость, являются не истинно физическими свойствами, а лишь условными показателями изменения состояния его структуры при продолжительном постоянном или циклическом воздействии на материал агрессивной среды.
Сохранение эксплуатационных характеристик во времени принято называть долговечностью строительных материалов.
Поможем написать любую работу на аналогичную тему