Суждение, содержащее новое знание, может быть получено посредством преобразования некоторого суждения. Так как исходное (преобразуемое) суждение рассматривается как посылка, а суждение, полученное в результате преобразования, — как заключение. Умозаключения, построенные посредством преобразования суждений, называются непосредственными. К ним относятся: 1) превращение, 2) обращение, 3) противопоставление предикату,4) умозаключения по логическому квадрату.
1. Превращение – разновидность непосредственного умозаключения, в котором изменяется качество посылки без изменения его количества. Осуществляется двумя способами:
- путем двойного отрицания, которое ставится перед связкой и перед предикатом: S есть Р => S не есть не-Р (Все члены совета директоров ассоциации не являются экономистами => Ни один член совета директоров ассоциации не является неэкономистом);
- путем перевода отрицания из предиката в связку: S есть не-Р => S не есть Р (Некоторые непроизводственные услуги недорогие => Некоторые непроизводственные услуги не являются дорогими)
Превращение опирается на правило: двойное отрицание равносильно утверждению.
Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.
Общеутвердительное суждение (А) превращается в общеотрицательное (Е). Например: «Все сотрудники нашего коллектива — квалифицированные специалисты. Следовательно, ни один сотрудник нашего коллектива не является неквалифицированным специалистом».
Схема превращения суждения А: Все S суть Р => Ни одно S не есть не-Р
Общеотрицательное суждение (Е) превращается в общеутвердительное (А). Например: «Ни одно религиозное учение не является научным. Следовательно, всякое религиозное учение является ненаучным».
Схема превращения суждения Е: Ни одно S не есть Р => Все S суть не-Р
Частноутвердительное суждение (I) превращается в частноотрицательное (О). Например: «Некоторые государства являются федеративными. Следовательно, некоторые государства не являются нефедеративными».
Схема превращения суждения I: Некоторые S суть Р => Некоторые S не суть не-Р
Частноотрицательное суждение (О) превращается в частноутвердительное (I). Например: «Некоторые преступления не являются умышленными. Следовательно, некоторые преступления являются неумышленными».
Схема превращения суждения О: Некоторые S не суть Р => Некоторые S суть не-Р
Таким образом, чтобы превратить суждение, нужно заменить его связку на противоположную, а предикат — на понятие, противоречащее предикату исходного суждения. Суждение, полученное посредством превращения, сохраняет количество, но изменяет качество исходного суждения. Субъект исходного суждения не изменяется.
Устанавливая отношения между субъектом и понятием, противоречащим предикату исходного суждения, мы рассматриваем предмет суждения с новой стороны, фиксируя внимание на свойстве, не совместимом со свойством, выраженным в предикате исходного суждения. В этом смысл превращения.
2. Обращение.
Преобразование суждения, в результате которого субъект исходного суждения становится предикатом, а предикат — субъектом заключения при сохранении качества суждения, называется обращением.
Обращение подчиняется правилу: субъект распределен в общих и не распределен в частных суждениях, предикат распределен в отрицательных и не распределен в утвердительных суждениях..
Различают простое (чистое) обращение и обращение с ограничением.
Простым, или чистым, называется обращение без изменения количества суждения. Так обращаются суждения, оба термина которых распределены или оба не распределены. Если же предикат исходного суждения не распределен, то он не будет распределен и в заключении, где он становится субъектом. Поэтому его объем ограничивается. Такое обращение называется обращением с ограничением.
Общеутвердительное суждение (А) обращается в частноутвердительное (I), т.е. с ограничением. Например: «Все студенты нашей группы (S+) сдали экзамены (Р-). Следовательно, некоторые сдавшие экзамены (Р-) — студенты нашей группы (S-)». В исходном суждении предикат не распределен, поэтому он, становясь субъектом заключения, также не распределен. Его объем ограничивается («некоторые сдавшие экзамены»).
Схема обращения суждения А: Все S суть Р => Некоторые Р суть S
Общеутвердительные выделяющие суждения (в них предикат распределен) обращаются без ограничения по схеме: Все S, и только S, суть Р => Все Р суть S
Общеотрицательное суждение (Е) обращается в общеотрицательное (Е), т.е. без ограничения. Например: «Ни один студент нашей группы (S+) не является неуспевающим (Р+). Следовательно, ни один неуспевающий (Р+) не является студентом нашей группы (S+)». Простое обращение этого суждения возможно потому, что его предикат («неуспевающие») распределен.
Схема обращения суждения Е: Ни одно S не есть Р => Ни одно Р не есть S
Частноутвердителъное суждение (I) обращается в частно-твердительное (I). Это простое (чистое) обращение. Предикат, не распределенный в исходном суждении, не распределен и в заключении. Количество суждения не изменяется. Например: «Некоторые студенты нашей группы (S-) — отличники (Р-). Следовательно, некоторые отличники (Р-) — студенты нашей группы (S-).
Схема обращения суждения I: Некоторые S суть Р => Некоторые Р суть S
Частноутвердительное выделяющее суждение (предикат распределен) обращается в общеутвердительное. Например: «Некоторые общественно опасные деяния (S-) являются преступлениями против правосудия (Р+).Следовательно, все преступления против правосудия (Р+) являются общественно опасными деяниями (S-)».
Эти суждения обращаются по схеме: Некоторые S, и только S, суть Р => Все Р суть S
Частноотрицательное суждение (О) не обращается.
Таким образом, обращение суждения не ведет к изменению его качества. Что касается количества, то оно может изменяться (обращение с ограничением), но может оставаться тем же самым (простое, или чистое, обращение).
Благодаря тому, что предметом нашей мысли становится предмет, выраженный предикатом исходного суждения, мы уточняем наши знания, придаем им большую определенность.
3. Противопоставление предикату.
Преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату, а предикатом — субъект исходного суждения, называется противопоставлением предикату.
Противопоставление предикату может рассматриваться как результат превращения и обращения: превращая исходное суждение S — Р, устанавливаем отношение S к не-Р; суждение, полученное путем превращения, обращается, в результате устанавливается отношение не-Р к S.
Заключение, полученное посредством противопоставления предикату, зависит от количества и качества исходного суждения
Общеутвердительное суждение (А) преобразуется в общеотрицательное (Е). Например: «Все адвокаты имеют юридическое образование. Следовательно, ни один, не имеющий юридического образования, не является адвокатом».
Схема противопоставления предикату суждения А: Все S суть Р => Ни одно не-Р не есть S
Общеотрицательное суждение (Е) преобразуется в частноутвердительное (I). Например: «Ни одно промышленное предприятие нашего города не является убыточным. Следовательно, некоторые неубыточные предприятия являются промышленными предприятиями нашего города».
Схема противопоставления предикату суждения Е: Ни одно S не есть Р => Некоторые не-Р суть S
Частноутвердительное суждение (I) посредством противопоставления предикату не преобразуется.
Частноотрицательное суждение (О) преобразуется в частноутвердительное (I). Например: «Некоторые свидетели не являются совершеннолетними. Следовательно, некоторые несовершеннолетние являются свидетелями».
Схема противопоставления предикату суждения О: Некоторые S не суть Р => Некоторые не-Р суть S
Значение умозаключений посредством противопоставления предикату состоит в том, что в них выясняется отношение предметов, не
входящих в объем предиката, к предметам, отраженным субъектом исходного суждения. Устанавливая отношение между этими предметами, мы уточняем наши знания, высказываем нечто новое, что не было в явной форме выражено в исходном суждении.
4. Умозаключения по логическому квадрату.
Учитывая свойства отношений между категорическими суждениями А, Е, I, О, которые иллюстрированы схемой логического квадрата, можно строить выводы, устанавливая следование истинности или ложности одного суждения из истинности или ложности другого суждения.
Рассмотрим эти выводы.
Отношение противоречия (контрадикторности): А — О, Е — I (диагонали).
Поскольку отношения между противоречащими суждениями подчиняются закону исключенного третьего, из истинности одного суждения следует ложность другого суждения, из ложности одного — истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность частноотрицательного суждения (О) «Некоторые народы не имеют права на самоопределение»; из истинности частноутвердительного суждения (I) «Некоторые приговоры суда являются оправдательными» следует ложность общеотрицательного суждения (Е) «Ни один приговор суда не является оправдательным».
Отношение противоположности (контрарности): А — Е (слева направо вверху). Из истинности одного суждения следует ложность другого суждения, но из ложности одного из них не следует истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность общеотрицательного суждения (Е) «Ни один народ не имеет права на самоопределение». Но из ложности суждения А «Все приговоры суда являются оправдательными» не следует истинность суждения Е «Ни один приговор суда не является оправдательным». Это суждение также ложно.
Отношения между противоположными суждениями подчиняются закону непротиворечия.
Отношение частичной совместимости (субконтрарности): I — О (слева направо внизу).
Из ложности одного суждения следует истинность другого, но из истинности одного из них может следовать как истинность, так и ложность другого суждения. Истинными могут быть оба суждения. Например, из ложного суждения «Некоторые врачи не имеют медицинского образования» следует истинное суждение «Некоторые врачи имеют медицинское образование», из истинного суждения «Некоторые свидетели допрошены» следует суждение «Некоторые свидетели не допрошены», которое может быть как истинным, так и ложным.
Таким образом, субконтрарные суждения не могут быть вместе ложными; по крайней мере одно из них истинно.
Отношение подчинения: (А — I, Е — О) (сверху вниз слева и справа).
Из истинности подчиняющего суждения следует истинность подчиненного суждения, но не наоборот: из истинности подчиненного суждения истинность подчиняющего суждения не следует, оно может быть истинным, но может быть ложным. Например, из истинности подчиняющего суждения А «Все врачи имеют медицинское образование» следует истинность подчиненного ему суждения I «Некоторые врачи имеют медицинское образование». Из истинного подчиненного суждения «Некоторые свидетели допрошены» нельзя с необходимостью утверждать об истинности подчиняющего суждения «Все свидетели допрошены».
Из ложности подчиненного суждения следует ложность подчиняющего суждения, но не наоборот: из ложности подчиняющего суждения ложность подчиненного с необходимостью не следует: оно может быть истинным, но может быть и ложным. Например, из ложности подчиненного суждения (О) «Некоторые народы не имеют права на самоопределение» следует ложность подчиняющего суждения (Е) «Ни один народ не имеет права на самоопределение». Если ложным является подчиняющее суждение (А) «Все свидетели допрошены», то подчиненное ему суждение (I) «Некоторые свидетели допрошены» может быть истинным, но может быть ложным (возможно, что ни один свидетель не допрошен).
Знание зависимости истинности или ложности одних суждений от истинности или ложности других помогает делать правильные выводы в процессе рассуждения.
Умозаключения по логическому квадрату находят применение во многих мыслительных приемах и операциях, в том числе в аргументации, где построение некоторых способов косвенного доказательства и косвенного опровержения опирается на отношения противоречия.
Поможем написать любую работу на аналогичную тему