Нужна помощь в написании работы?

Дисперсные системы с жидкой дисперсной фазой и жидкой дисперсионной средой называются эмульсиями.

Их специфической чертой является возможность образования эмульсий двух типов: прямой, в которой дисперсионной средой является более полярная жидкость (обычно вода) и обратной, в которой более полярная жидкость образует дисперсную фазу.

При определенных условиях наблюдается обращение фаз эмульсий, когда эмульсия данного типа при введении каких-либо реагентов или при изменении условий превращается в эмульсию противоположного типа.

 Важнейший представитель эмульсий – водонефтяная эмульсия, очень сильно стабилизированная природными ПАВ и смолами. Разрушение таких систем является первой и достаточно трудной стадией подготовки и переработки нефти.

Агрегативная устойчивость эмульсий может обусловливаться многими факторами устойчивости.г

Их образование возможно путем самопроизвольного диспергирования при определенных условиях, когда межфазное натяжение настолько мало (менее 10-2-10-1 мДж/м2), что оно полностью компенсируется энтропийным фактором. Это оказывается возможным при температурах, близких к так называемой критической температуре смешения. Кроме того, свойством снижать межфазное натяжение до сверхнизких значений обладают коллоидные ПАВ и растворы ВМС, что позволяет получать термодинамически устойчивые (самопроизвольно образующиеся) эмульсии и при обычных условиях.

В термодинамически устойчивых и самопроизвольно образующихся (лиофильных) эмульсиях частицы имеют очень высокую дисперсность.

Большинство же эмульсий являются микрогетерогенными, термодинамическими неустойчивыми (лиофобными) системами. При длительном хранении в них происходит слипание (коагуляция), а затем и слияние капель (коалесценция).

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Эмульсии, как и все коллоидные и микрогетерогенные системы, агрегативно неустойчивы из-за избытка свободной .энергии на межфазной поверхности. Агрегативная неустойчивость эмульсий проявляется в самопроизвольном образовании агрегатов капелек с последующим слиянием (коалесценцией) отдельных капелек друг с другом. В пределе это может приводить к полному разрушению эмульсии и разделению ее на два слоя, из которых один соответствует жидкости, образующей в эмульсии дисперсную фазу, а другой — жидкости, являющейся дисперсионной средой.

Агрегативную устойчивость эмульсий характеризуют либо скоростью расслаивания эмульсии, либо продолжительностью существования "(временем жизни)"отдельных капелек в контакте друг с другом или с межфазной поверхностью.

На агрегативную устойчивость эмульсий сильнее всего влияют природа и содержание в системе эмульгатора. С термодинамической точки зрения эмульгатор, адсорбируясь на межфазной границе, понижает межфазное поверхностное натяжение и в отдельных случаях может приводить даже к образованию равновесных коллоидных систем (эмульсии, получаемые из эмульсолов). Другое объяснение заключается в том, что при наличии стабилизатора на границе раздела фаз между капельками возникают силы отталкивания (энергетический барьер). Повышение в известных пределах концентрации эмульгатора в системе способствует устойчивости эмульсии.

Эмульсии термодинамически нестабильны. Чтобы приготовить эмульсию с приемлемой кинетической стабильностью, необходимо присутствие третьего компонента – эмульгатора. Большинство эффективных эмульгаторов – это ПАВ, природные материалы (такие, как белки) и тонко измельченные порошки. Эмульгаторы адсорбируются на границе раздела жидкость/жидкость и препятствуют образованию капель, подобно тому, как действуют стабилизаторы золей. Существует, однако, еще один фактор, определяющий стабильность эмульсий: коалесценция (слияние капель). Эмульгатор должен образовывать плотную, но эластичную пленку вокруг капли. Если пленка разрывается, капли будут сливаться и становится возможным разделение фаз.

Природа эмульгатора определяет не только устойчивость, но и тип эмульсии. Опыт показывает, что гидрофильные эмульгаторы, лучше растворимые в воде, чем в углеводородах, способствуют образованию эмульсии типа м/в, а гидрофобные (или олеофильные) эмульгаторы, лучше растворимые в углеводородах, — эмульсий типа в/м .(правило Банкрофта). Это вполне понятно, так как эмульгатор препятствует слипанию, или коалесценции, капелек только тогда, когда он находится у поверхности с наружной стороны капельки, т. е. лучше растворяется в дисперсионной среде.

В качестве эмульгаторов могут применяться самые различные по природе вещества: поверхностно-активные вещества, молекулы которых содержат ионогенные полярные группы, (мыла в широком смысле слова), неионогенные поверхностно-активные вещества" высокомолекулярные соединения (ВМС). Эмульгирующей способностью обладают даже порошки. Стабилизация более или менее концентрированных эмульсий с помощью обычных неорганических электролитов невозможна вследствие недостаточной адсорбции их ионов на межфазной границе неполярный углеводород — вода.

Эффективность эмульгатора характеризуют специальным числом — гидрофильно-липофильным ьалансом (ГЛБ). Если число ГЛБ лежит в пределах 3—6, образуется эмульсия в/м. Эмульгаторы с числом ГЛБ 8—13 дают эмульсию м/в. Изменяя природу эмульгатора и его концентрацию, можно добиться обращения фаз эмульсии.

Различают следующие термодинамические и кинетические факторы устойчивости дисперсных систем.

1.Электростатический фактор заключается в уменьшении межфазного натяжения вследствие формирования двойного электрического слоя на поверхности частиц, а также в кулоновском отталкивании, возникающем при их сближении.

Двойной электрический слой (ДЭС) образуется при адсорбции ионогенных (диссоциирующих на ионы) ПАВ. Адсорбция ионогенного ПАВ может происходить на границе двух несмешивающихся жидкостей, например воды и бензола. Полярная группа молекулы ПАВ, обращенная к воде, диссоциирует, сообщая поверхности бензольной фазы  заряд, соответствующий органической части молекул ПАВ (потенциалопределяющих ионов). Противоионы (неорганические ионы) формируют двойной слой со стороны водной фазы, так как сильнее с ней взаимодействуют.

Существуют и другие механизмы образования двойного электрического слоя. Например, ДЭС образуется на межфазной поверхности между водой и малорастворимым иодидом серебра. Если в воду добавить хорошо растворимый нитрат серебра, то образующиеся в результате диссоциации ионы серебра могут достраивать кристаллическую решетку AgI, т.к. они входят в ее состав (специфическая адсорбция ионов серебра). Вследствие этого поверхность соли заряжается положительно (избыток катионов серебра), а иодид-ионы будут выступать в качестве противоионов.

Следует также упомянуть о возможности образования двойного электрического слоя в результате перехода ионов или электронов из одной фазы в другую (поверхностная ионизация).

ДЭС, образующийся в результате описанных выше процессов пространственного разделения зарядов, имеет размытый (диффузный) характер, что обусловлено одновременным влиянием на его строение электростатического (кулоновского) и ван-дер-ваальсовского взаимодействия, а также теплового движения ионов и молекул.

Так называемые электрокинетические явления (электрофорез, электроосмос и др.) обусловлены наличием двойного электрического слоя на границе раздела фаз.

2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного

натяжения при введении поверхностно-активных веществ (благодаря адсорбции и сольватации).

3. Энтропийный фактор, как и первые два, относится к термодинамическим. Он дополняет первые два фактора и действует в системах, в которых частицы участвуют в тепловом движении. Энтропийное отталкивание частиц можно представить как наличие постоянной диффузии частиц из области с большей концентрацией в область с меньшей концентрацией, т.е. система постоянно стремится к выравниванию по всему объему концентрации дисперсной фазы.

4. Структурно-механический фактор является кинетическим. Его действие обусловлено тем, что на поверхности частиц могут образовываться пленки, обладающие упругостью и механической прочностью, разрушение которых требует затрат энергии и времени.

5. Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости и плотности дисперсионной среды  в тонких прослойках жидкости между частицами дисперсной фазы.

Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совместном действии термодинамических и кинетических факторов.

Структурно-механический барьер, рассмотренный впервые П.А.Ребиндером, - это сильный фактор стабилизации, связанный с образованием на границах раздела фаз адсорбционных слоев, лиофилизующих поверхность. Структура и механические свойства таких слоев способны обеспечить весьма высокую устойчивость прослоек дисперсионной среды между частицами дисперсной фазы.

Структурно-механический барьер возникает при адсорбции молекул ПАВ, которые способны к образованию гелеобразного структурированного слоя на межфазной границе, хотя, возможно, и не обладают высокой поверхностной активностью по отношению к данной границе раздела фаз. К таким веществам относятся смолы, производные целлюлозы, белки и другие так называемые защитные коллоиды, являющиеся высокомолекулярными веществами.

Поделись с друзьями