Нужна помощь в написании работы?

Распределением признака называется закономерность встречаемости разных его значений (Плохинский Н.А., 1970, с. 12).

В психологических исследованиях чаще всего ссылаются на нормальное распределение.

 Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине - достаточно часто. Нормальным такое распределение называется потому, что оно очень часто встречалось в естественно-научных исследованиях и казалось "нормой" всякого массового случайного проявления признаков. Это распределение следует закону, открытому тремя учеными в разное время: Муавром в 1733 г. в Англии, Гауссом в 1809 г. в Германии и Лапласом в 1812 г. во Франции (Плохинский Н.А., 1970, с.17). График нормального распределения представляет собой привычную глазу психолога-исследователя так называемую колоколообразную кривую (см, напр., Рис. 1.1, 1.2).

Параметры распределения - это его числовые характеристики, указывающие, где "в среднем" располагаются значения признака, насколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака. Наиболее практически важными параметрами являются математическое ожидание, дисперсия, показатели асимметрии и эксцесса.

В реальных психологических исследованиях мы оперируем не параметрами, а их приближенными значениями, так называемыми оценками параметров. Это объясняется ограниченностью обследованных выборок. Чем больше выборка, тем ближе может быть оценка параметра к его истинному значению. В дальнейшем, говоря о параметрах, мы будем иметь в виду юс оценки.

Среднее арифметическое (оценка математического ожидания) вычисляется по формуле:

где x i    - каждое наблюдаемое значение признака;

        i - индекс, указывающий на порядковый номер данного значения признака;

        n - количество наблюдений;

        - знак суммирования.

Оценка дисперсии определяется по формуле:

где Xi  - каждое наблюдаемое значение признака;

x - среднее арифметическое значение признака;

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

п - количество наблюдений.

Величина, представляющая собой квадратный корень из несмещенной оценки дисперсии (S), называется стандартным отклонением или средним квадратнческим отклонением. Для большинства исследователей привычно обозначать эту величину греческой буквой δ (сигма), а не S. На самом деле, δ - это стандартное отклонение в генеральной совокупности, a S - несмещенная оценка этого параметра в исследованной выборке. Но, поскольку S - лучшая оценка δ (Fisher R.A., 1938), эту оценку стали часто обозначать уже не как S, а как δ:

В тех случаях, когда какие-нибудь причины благоприятствуют более частому появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторонней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней, или отрицательной - более высокие (см. Рис. 1.5).

Показатель асимметрии (А) вычисляется по формуле:

Для симметричных распределений А=0.

                        Рис. 1.5. Асимметрия распределений.

                                   А) Левая, положительная

                                   Б) правая, отрицательная

В тех случаях, когда какие-либо причины способствуют преимущественному появлению средних или близких к средним значений, образуется распределение с положительным эксцессом. Если же в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см. Рис. 1.6).

Показатель эксцесса (Е) определяется по формуле:

Рис. 1.6. Эксцесс: а) положительный; б) отрицательный

В распределениях с нормальной выпуклостью Е=0.

Параметры распределения оказывается возможным определить только по отношению к данным, представленным по крайней мере в интервальной шкале. Как мы убедились ранее, физические шкалы длин, времени, углов являются интервальными шкалами, и поэтому к ним применимы способы расчета оценок параметров, по крайней мере, с формальной точки зрения. Параметры распределения не учитывают

истинной  психологической  неравномерности  секунд,   миллиметров  и других физических единиц измерения.

На практике психолог-исследователь может рассчитывать параметры любого распределения, если единицы, которые он использовал при измерении, признаются разумными в научном сообществе.

Поделись с друзьями