Высшим достижением техники XVII столетия была так называемая «машина Марли»; она включала в себя 14 водяных колес диаметром 12 метров и была предназначена для обеспечения работы версальских фонтанов. Машины того времени работали с помощью приводов от водяных колес и заводы располагались у рек. Крупнейшие металлургические заводы были расположены в Швеции – в этой стране были богатые железные руды и не было недостатка в древесном угле.
Фундаментальное открытие шведов, легкая артиллерия, вызвало новую волну нашествий .
В то время как исход войн на суше определяла артиллерия, исход войн на море определялся совершенством конструкции кораблей. Конец XVI века был ознаменован новым фундаментальным открытием, изменившим судьбы народов, - изобретением голландского флайта. Флайт - это был корабль нового типа, он имел удлиненный корпус, высокие мачты с совершенным парусным вооружением и был оснащен штурвалом. Флайт намного превосходил испанские каравеллы своей скоростью и маневренностью – и он подарил голландцам господство на морях.
Европейские страны – прежде всего Англия и Франция – старались избавиться от голландского посредничества и завести свой океанский флот. Однако Голландия не желала расставаться со своей торговой монополией; вторая половина XVII века вошла в историю как эпоха морских войн; в конечном счете Голландия потерпела поражение и новым властелином морей стала Англия.
Первые машины создавались механиками-самоучками, они изготавливались из дерева и не требовали инженерных расчетов. Техника развивалась независимо от науки. После того как сопротивление противников машин стало ослабевать, новые машины стали появляться одна за другой. В 1774-1779 годах Самуэл Кромптон сконструировал прядильную мюль-машину, выпускавшую более качественную ткань, чем машина Аркрайта. В 1784 году Эдмунд Картрайт создал ткацкий станок, который увеличил производительность ткачей в 40 раз.
Промышленная революция была сложным процессом, происходившим одновременно в различных отраслях промышленности. В горной промышленности одной из основных производственных проблем была откачка воды из шахт. В 1698 году англичанин Севери создал машину, использовавшую для этой цели силу пара; в 1712 Томас Ньюкомен усовершенствовал эту машину, снабдив ее цилиндром и поршнем. В машине Ньюкомена находившийся в цилиндре пар конденсировался впрыскиванием воды, в цилиндре создавалось разряжение, и поршень втягивался внутрь цилиндра под воздействием атмосферного давления. Разобравшись в недостатках модели, Уатт создал машину, принципиально отличавшуюся от нее; во-первых, поршень в машине Уатта двигало не атмосферное давление, а пар, впускавшийся из парового котла; во-вторых, после завершения хода поршня отработанный пар выводился в специальный конденсатор. В 1769 году Уатт взял патент на свою машину, но специалисты утверждали, что идея Уатта не может быть практически реализована: при тогдашней технике невозможно было обточить математически правильный паровой цилиндр. Уатту повезло, что как раз в это время была создана совершенная машина, предназначенная для высверливания стволов пушек. Уатту удалось привлечь к делу крупного фабриканта Мэтью Болтона, который ради этой идеи поставил на карту все свое состояние. В 1775 году на заводе Болтона в Бирмингеме было налажено производство паровых машин; однако только через десять лет это производство стало давать ощутимую прибыль. В 1784 году Уатт запатентовал паровую машину двойного действия, в котором пар поочередно толкал поршень с двух сторон; в этой машине был применен центробежный регулятор, автоматически поддерживавший заданное число оборотов.
Уже вскоре после появления паровой машины начались попытки создания пароходов. В 1802 году американец ирландского происхождения Роберт Фултон построил в Париже небольшую лодку с паровым двигателем и продемонстрировал ее членам Французской Академии. В 1819 году американский пароход «Саванна» пересек Атлантический океан, а в 1830-х годах начинает действовать первая регулярная трансатлантическая пароходная линия.
Одновременно со строительством пароходов делались попытки создания паровой повозки. На многих рудниках существовали рельсовые пути, по которым лошади тащили вагонетки с рудой. В 1803 году механик Ричард Тревитик построил первый паровоз, заменивший лошадей на одной из рельсовых дорог в Уэльсе – однако Тревитику не удалось получить поддержку предпринимателей. В 1830 году Стефенсон завершил строительство первой большой железной дороги между городами Манчестер и Ливерпуль; для этой дороги он сконструировал паровоз «Ракета», на котором впервые применил трубчатый паровой котел. «Ракета» везла вагон с пассажирами со скоростью 60 км/час; выгоды от дороги были таковы, что Стефенсону сразу же предложили руководить строительством дороги через всю Англию от Манчестера до Лондона. Позже Стефенсон строил железные дороги в Бельгии и в Испании. В 1832 году была пущена первая железная дорога во Франции, немного позже – в Германии и США; локомотивы для этих дорог изготовлялись на заводе Стефенсона в Англии.
Промышленная революция дала в руки европейцев новое оружие – винтовки и стальные пушки. Уже давно было известно, что ружья с нарезами в канале ствола придают пуле вращение, отчего дальность увеличивается вдвое, а кучность в 12 раз. Однако зарядить такое ружье с дула стоило немалого труда, и скорострельность была очень низкой, не более одного выстрела в минуту. В 1808 году по заказу Наполеона французский оружейник Поли создал казнозарядное ружье; в бумажном патроне помещались порох и затравка, взрываемая уколом игольчатого ударника.
Одновременно произошла еще одна революция в военном деле, вызванная появлением стальных пушек. Чугун был слишком хрупок и чугунные пушки часто разрывались при выстреле; стальные пушки позволяли использовать значительно более мощный заряд. В 1850-х годах английский изобретатель и предприниматель Генри Бессемер изобрел бессемеровский конвертер, а в 60-х годах французский инженер Эмиль Мартен создал мартеновскую печь. После этого было налажено промышленное производство стали и производство стальных пушек.
Изобретатели машин, произведших промышленную революцию, не были учеными, это были мастера-самоучки. Некоторые из них были неграмотны; к примеру, Стефенсон научился читать в 18 лет. В период промышленного переворота наука и техника развивались независимо друг от друга. В особенности это касалось математики, в это время появился векторный анализ, французский математик О. Коши создал теорию функций комплексного переменного, а англичанин У. Гамильтон и немец Г. Грасман создали векторную алгебру. В работах Лапласа, Лежандра и Пуассона была разработана теория вероятностей. Основные достижения физики были связаны с исследованием электричества и магнетизма. На рубеже XVIII-XX веков итальянский физик Вольта создал гальваническую батарею; такого рода батареи долгое время были единственным источником электрического тока и необходимым элементом всех опытов. В 1820 году датский физик Г. Эрстед обнаружил, что электрический ток воздействует на магнитную стрелку, затем француз А. Ампер установил, что вокруг проводника появляется магнитное поле и между двумя проводниками возникают силы притяжения или отталкивания. В 1831 году Майкл Фарадей открыл явление электромагнитной индукции. Это явление состоит в том, что если замкнутый проводник при своем перемещении пересекает магнитные силовые линии, то в нем возбуждается электрический ток. В 1833 году работавший в России немецкий ученый Эмилий Ленц создал общую теорию электромагнитной индукции. В 1841 году Джоуль исследовал эффект выделения теплоты при прохождении электрического тока. В 1865 году выдающийся английский ученый Джеймс Максвелл создал теорию электромагнитного поля.
Теория электромагнетизма стала первой областью, где научные разработки стали непосредственно внедряться в технику. В 1832 году русский подданный барон П. В. Шиллинг продемонстрировал первый образец электрического телеграфа. В приборе Шиллинга импульсы электрического тока вызывали отклонение стрелки, соответствующее определенной букве. В 1837 году американец Морзе создал усовершенствованный телеграф, в котором передаваемые сообщения отмечались на бумажной ленте с помощью специальной азбуки. Однако потребовалось шесть лет прежде чем американское правительство оценило это изобретение и выделило деньги на постройку первой телеграфной линии между Вашингтоном и Балтимором. После этого телеграф стал стремительно развиваться, в 1850 году телеграфный кабель соединил Лондон и Париж, а в 1858 году был проложен кабель через Атлантический океан.
В конце XVIII века родилась новая наука, химия. Прежде алхимики считали что все вещества состоят из четырех элементов огня, воздуха, воды и земли. В 1789 году Антуан Лавуазье экспериментально доказал закон сохранения вещества. Затем Джон Дальтон предложил атомистическую теорию строения вещества; он утверждал, что атомы различных веществ обладают различным весом и что химические соединения образуются сочетанием атомов в определенных численных соотношениях. В 1809 году был открыт закон кратных объемов при химическом взаимодействии газов. Это явление было объяснено Дальтоном и Гей-Люссаком как свидетельство того, что в равных объемах газа содержится одинаковое количество молекул. Позднее Авогадро выдвинул гипотезу, что в определенном объеме (скажем, кубометре) любого газа содержится одинаковое количество молекул; эта гипотеза была экспериментально подтверждена в 40-х годах французским химиком Ш. Жераром. В 1852 году английский химик Э. Фрэнкленд ввел понятие валентности, то есть числового выражения свойств атомов различных элементов вступать в химические соединения друг с другом. В 1869 году Д. И. Менделеев создал периодическую систему элементов.
Химическая промышленность в первой половине XIX века производила в основном серную кислоту, соду и хлор. В 1785 году Клод Бертолле предложил отбеливать ткани хлорной известью. В 1842 году русский химик Николай Зинин синтезировал первый искусственный краситель, анилин. В 50-х годах немецкий химик А. Гофман и его ученик У. Перкин получили два других анилиновых красителя, розанелин и мовеин. В результате этих работ стало возможным создание анилинокрасочной промышленности, получившей быстрое развитие в Германии. Другой важной отраслью химической промышленности было производство взрывчатых веществ. В 1845 году швейцарец Щенбейн изобрел пироксилин, а итальянец Сабреро – нитроглицерин. В 1862 году швед Альфред Нобель наладил промышленное производство нитроглицерина, а затем перешел к производству динамита.
В 1840-х годах немецкий химик Юстус Либих обосновал принципы применения минеральных удобрений в сельском хозяйстве. С этого времени началось производство суперфосфатных и калиевых удобрений, Германия стала центром европейской химической промышленности.
Одним из достижений экспериментальной химии было создание фотографии. В XVIII веке был распространен аттракцион с использованием камеры-обскуры. Это был ящик с небольшим отверстием в которое вставлялось увеличительное стекло; на противоположной стенке можно было видеть изображение находящихся перед камерой предметов. В 1820-х годах французский художник Жозеф Ньепс попытался зафиксировать это изображение. Покрыв слоем горной смолы медную пластинку, он вставлял ее в камеру; потом пластинку подвергали действию различных химикалий, чтобы проявить изображение. Все дело было в подборе фотонесущего слоя, проявителя и закрепителя. Потребовались долгие годы экспериментов, которые после смерти Ньепса продолжал его помощник Луи Дагер. К 1839 году Дагеру удалось получить изображение на пластинках, покрытых иодистым серебром после проявления их парами ртути; таким образом появилась дагерротипия. Французское правительство оценило это изобретение и назначило Дагеру пожизненную пенсию в 6 тысяч франков.
В конце XIX столетия наступила «Эпоха электричества». Если первые машины создавались мастерами-самоучками, то теперь наука властно вмешалась в жизнь людей – внедрение электродвигателей было следствием достижений науки. «Эпоха электричества» началась с изобретения динамомашины; генератора постоянного тока, его создал бельгийский инженер Зиновий Грамм в 1870 году. Вследствие принципа обратимости машина Грамма могла работать как в качестве генератора, так и в качестве двигателя; она могла быть легко переделана в генератор переменного тока.
Большим достижением электротехники было создание электрических ламп. За решение этой задачи в 1879 году взялся американский изобретатель Томас Эдисон; его сотрудники проделали свыше 6 тысяч опытов, опробуя для нити накаливания различные материалы, лучшим материалом оказались волокна бамбука, и первые лампочки Эдисона были «бамбуковыми». Лишь спустя двадцать лет по предложению русского инженера Лодыгина нить накаливания стали изготовлять из вольфрама.
Электростанции требовали двигателей очень большой мощности; эта проблема была решена созданием паровых турбин. В 1889 году швед Густав Лаваль получил патент на турбину, в которой скорость истекания пара достигала 770 м/сек.
. Бензиновый двигатель потребовал создания карбюратора, устройства для распыления топлива в цилиндре. Первый работоспособный бензиновый двигатель был создан в 1883 году немецким инженером Юлиусом Даймлером. Этот двигатель открыл эру автомобилей; уже в 1886 году Даймлер поставил свой двигатель на четырехколесный экипаж. Эта машина была продемонстрирована на выставке в Париже, где лицензию на ее производство купили французские фабриканты Рене Панар и Этьен Левассор. Панар и Левассор использовали только двигатель Даймлера; они создали свой автомобиль, оснастив его системой сцепления, коробкой передач и резиновыми шинами. Это был первый настоящий автомобиль; в 1894 году он выиграл первые автомобильные гонки Париж-Руан. В следующем году Левассор на своем автомобиле выиграл гонку Париж-Бордо. «Это было безумие! – сказал победитель. - Я мчался со скоростью 30 километров в час!» Однако Даймлер сам решил заняться производством автомобилей; в 1890 году он создал компанию «Даймлер моторен», и десять лет спустя эта компания выпустила первый автомобиль марки «Мерседес». «Мерседес» стал классическим автомобилем начала XX века; он имел четырехцилиндровый двигатель мощностью 35 л. с. и развивал скорость 70 км/час. Эта красивая и надежная машина имела невероятный успех, она положила начало массовому производству автомобилей.
К. п. д. двигателя Даймлера составлял около 20%, к. п. д. паровых машин не превосходил 13%. Между тем согласно теории тепловых двигателей, разработанной французским физиком Карно, к. п. д. идеального двигателя мог достигать 80%. Идея идеального двигателя волновала умы многих изобретателей, в начале 90-х годов ее попытался воплотить в жизнь молодой немецкий инженер Рудольф Дизель. Идея Дизеля состояла в сжатии воздуха в цилиндре до давления порядка 90 атмосфер, при этом температура достигала 900 градусов; затем в цилиндр впрыскивалось топливо; в этом случае цикл работы двигателя получался близким к идеальному «циклу Карно». Дизелю не удалось полностью реализовать свою идею, из-за технических трудностей он был вынужден понизить давление в цилиндре до 35 атмосфер. Тем не менее, первый двигатель Дизеля, появившийся в 1895 году, произвел сенсацию – его к. п. д. составлял 36%, вдвое больше, чем у бензиновых двигателей. Многие фирмы стремились купить лицензию на производство двигателей, и уже в 1898 году Дизель стал миллионером. Однако производство двигателей требовало высокой технологической культуры, и Дизелю многие годы пришлось ездить по разным странам, налаживая производство своих двигателей.
Появление двигателя внутреннего сгорания сыграло большую роль в зарождении авиации. Поначалу думали, что достаточно поставить двигатель на крылатый аппарат - и он поднимется в воздух. В 1894 году знаменитый изобретатель пулемета Максим построил огромный самолет с размахом крыльев в 32 метра и весом 3,5 тонны – эта машина разбилась при первой попытке подняться в воздух. Оказалось, что основной проблемой воздухоплавания является устойчивость полета. Эта задача решалось долгими экспериментами с моделями и планерами. Еще в 1870-х годах француз Пено создал несколько маленьких моделей, приводимых в действие резиновым моторчиком; результатом его экспериментов был вывод о важной роли хвостового оперения. В 1890-х годах немец Отто Лилиенталь совершил около 2 тысяч полетов на сконструированном им планере. Он управлял планером, балансируя своим телом, и мог находиться в воздухе до 30 секунд, пролетая за это время 100 метров. Опыты Лилиенталя закончились трагически, он не смог справиться с порывом ветра и разбился, упав с высоты 15 метров. Работу над созданием планеров продолжили американцы братья Райт, владельцы велосипедной мастерской в городе Дейтоне. Братья Райт ввели вертикальный руль, поперечные рули-элероны и измерили подъемную силу крыльев с помощью продувания в изобретенной ими аэродинамической трубе. Построенный братьями Райт планер был хорошо управляемым и мог держаться в воздухе около минуты. В 1903 году братья Райт поставили на планер небольшой бензиновый двигатель, который они изготовили сами, в своей мастерской. 14 декабря 1903 года Вильбур Райт совершил первый моторный полет, пролетев 32 метра; 17 декабря дальность полета достигла 260 метров. Это были первые полеты в мире, до братьев Райт еще не один аэроплан не мог подняться в воздух. Постепенно увеличивая мощность мотора, братья Райт учились летать на своем аэроплане; в октябре 1905 года самолет продержался в воздухе 38 минут, пролетев по кругу 39 километров. Однако достижения братьев Райт остались незамеченными, и их обращенные к правительству просьбы о помощи остались без ответа. В том же 1905 году братья Райт были вынуждены из-за недостатка средств прекратить свои полеты. В 1907 году Райты посетили Францию, где общественность с большим интересом относилась к полетам первых авиаторов – правда, дальность полетов французских авиаторов измерялась лишь сотнями метров, и их аэропланы не имели элеронов. Рассказы и фотографии братьев Райт произвели во Франции такую сенсацию, что ее эхо докатилось до Америки и правительство немедленно предоставило Райтам заказ на 100 тысяч долларов. В 1908 году новый аэроплан Райтов совершил полет продолжительностью в 2,5 часа. Заказы на аэропланы посыпались со всех сторон, в Нью-Йорке была основана самолетостроительная компания «Райт» с капиталом 1 млн. долларов. Однако уже в 1909 году произошло несколько катастроф на «райтах», и наступило разочарование. Дело в том, что самолеты братьев Райт не имели хвостового оперения, и поэтому часто «клевали носом». Французские авиаторы знали о необходимости хвостового оперения из опытов Пено; вскоре они позаимствовали у братьев Райт элероны и превзошли своих американских собратьев. В 1909 году Луи Блерио совершил перелет через Ла-Манш. В этом же году Анри Фарман создал первую массовую модель аэроплана, знаменитый «Фарман-3». Этот самолет стал основной учебной машиной того времени и первым аропланом, который стал выпускаться серийно.
В конце XIX века продолжалась работа над созданием новых средств связи, на смену телеграфу пришли телефон и радиосвязь. Первые опыты по передаче речи на расстояние проводились английским изобретателем Рейсом в 60-х годах. В 70-х годах этими опытами заинтересовался Александер Белл, шотландец, эмигрировавший в Америку и преподававший сначала в школе для глухонемых детей, а потом в Бостонском университете. Один знакомый врач предложил Беллу воспользоваться для экспериментов человеческим ухом и принес ему ухо от трупа. Белл скопировал барабанную перепонку, и, поместив металлическую мембрану рядом с электромагнитом, добился удовлетворительной передачи речи на небольшие расстояния. В 1876 году Белл взял патент на телефон и в том же году продал более 800 экземпляров. В следующем году Дейвиз Юз изобрел микрофон, а Эдисон применил трансформатор для передачи звука на большие расстояния. В 1877 году была построена первая телефонная станция, Белл создал фирму по производству телефонов, и через 10 лет в США было уже 100 тысяч телефонных аппаратов.
При работе над телефоном у Эдисона возникла мысль записать колебания микрофонной мембраны. Он снабдил мембрану иглой, которая записывала колебания на цилиндре, покрытом фольгой. Так появился фонограф. В 1887 году американец Эмиль Берлинер заменил цилиндр круглой пластинкой и создал граммофон. Граммофонные диски можно было легко копировать, и вскоре появилось множество фирм, занимавшихся звукозаписью.
Новый шаг в развитии связи был сделан с изобретением радиотелеграфа. Научной основой радиосвязи была созданная Максвеллом теория электоромагнитных волн. В 1886 году Генрих Герц экспериментально подтвердил существование этих волн с помощью прибора, называемого вибратором. В 1891 году французский физик Бранли обнаружил, что металлические опилки, помещенные в стеклянную трубку, меняют сопротивление под действием электромагнитных волн. Этот прибор получил название когерера. В 1894 году английский физик Лодж использовал когерер, чтобы регистрировать прохождение волн, а в следующем году русский инженер Александр Попов приделал к когереру антенну и приспособил его для принятия сигналов, испускаемых вибратором Герца. В марте 1896 года Попов продемонстрировал свой аппарат на заседании Российского физико-химического общества и произвел передачу сигналов на расстояние 250 метров. Одновременно с Поповым свою радиотелеграфную установку создал молодой итальянец Гульельмо Маркони; он первым сумел запатентовать это изобретение; а в следующем году организовал акционерное общество для его использования. В 1898 году Маркони включил в свой приемник джиггер – прибор для усиления антенных токов, это позволило увеличить дальность передачи до 85 миль и осуществить передачу через Ла-Манш. В 1900 году Маркони заменил когерер магнитным детектором и осуществил радиосвязь через Атлантический океан: президент Рузвельт и король Эдуард VIII обменялись по радио приветственными телеграммами. В октябре 1907 года фирма Маркони открыла для широкой публики первую радиотелеграфную станцию.
Одним из замечательных достижений этого времени было создание кинематографа. Появление кино было прямо связано с усовершенствованием изобретенной Дагером фотографии. Англичанин Мэддокс в 1871 году разработал сухобромжелатиновый процесс, который позволил сократить выдержку до 1/200 секунды. В 1877 году поляк Лев Варнеке изобрел роликовый фотоаппарат с бромсеребряной бумажной лентой. В 1888 году немецкий фотограф Аншюц создал моментальный шторный затвор. После этого появилась возможность делать моментальные снимки, и вся проблема свелась к созданию скачкового механизма, чтобы производить снимки через промежутки в долю секунды. Этот механизм и первый киноаппарат были созданы братьями Люмьерами в 1895 году. В декабре этого года был открыт первый кинотеатр на бульваре Капуцинов в Париже. В 1896 году Люмьеры объехали все европейские столицы, демонстрируя свой первый кинофильм; эти гастроли имели колоссальный успех.
Поможем написать любую работу на аналогичную тему